Publications by authors named "Mirjam Sax"

Only a minor fraction of the total organic aerosol mass can be resolved on a molecular level. High molecular weight compounds in organic aerosols have recently gained much attention because this class of compound potentially explains a major fraction of the unexplained organic aerosol mass. These compounds have been identified with different mass spectrometric methods, and compounds with molecular masses up to 1000 Da are found in secondary organic aerosols (SOA) generated from aromatic and terpene precursors in smog chamber experiments.

View Article and Find Full Text PDF

A new environmental reaction smog chamber was built to simulate particle formation and growth similar to that expected in the atmosphere. The organic material is formed from nucleation of photooxidized organic compounds. The chamber is a 27 m3 fluorinated ethylene propylene (FEP) bag suspended in a temperature-controlled enclosure.

View Article and Find Full Text PDF

Two new artificial photolyase models that recognize pyrimidine dimers in protic and aprotic organic solvents as well as in water through a combination of charge and hydrogen-bonding interactions and use a mimic of the flavine to achieve repair through reductive photoinduced electron transfer are presented. Fluorescence and NMR titration studies show that it forms a 1:1 complex with pyrimidine dimers with binding constants of approximately 10(3) M(-1) in acetonitrile or methanol, while binding constants in water at pH 7.2 are slightly lower.

View Article and Find Full Text PDF

In this study we performed a direct comparison between two different ambient air samplers to characterize their performance in sampling oxidized gaseous organic compounds, known as oxidation products of aromatics. We investigated compounds with a variety of functional groups and vapor pressures. A polyurethane foam (PUF) adsorbent and an annular diffusion denuder sampler were operated along with particle filters.

View Article and Find Full Text PDF