Interactions between fungal pathogens such as Aspergillus fumigatus with host alveolar epithelium and innate immune cells are crucial in the defense against opportunistic fungal infections. In this study a simplified Transwell system with a confluent layer of A549 cells acted as a model for the alveolar surface. A.
View Article and Find Full Text PDFFront Cell Infect Microbiol
August 2019
Invasive aspergillosis (IA) is an infectious disease caused by the fungal pathogen that mainly affects immunocompromised hosts. To investigate immune cell cross-talk during infection with , we co-cultured natural killer (NK) cells and dendritic cells (DC) after stimulation with whole fungal structures, components of the fungal cell wall, fungal lysate or ligands for distinct fungal receptors. Both cell types showed activation after stimulation with fungal components and were able to transfer activation signals to the counterpart not stimulated cell type.
View Article and Find Full Text PDFAspergillus fumigatus is an opportunistic fungal pathogen causing detrimental infections in immunocompromised individuals. Dendritic cells (DCs) are potent antigen-presenting cells and recognize the A. fumigatus cell wall component β-1,3 glucan via Dectin-1, followed by DC maturation and cytokine release.
View Article and Find Full Text PDFInvasive aspergillosis (IA) is a devastating opportunistic infection and its treatment constitutes a considerable burden for the health care system. Immunocompromised patients are at an increased risk for IA, which is mainly caused by the species Aspergillus fumigatus. An early and reliable diagnosis is required to initiate the appropriate antifungal therapy.
View Article and Find Full Text PDFAspergillus fumigatus is an opportunistic mould that causes invasive pulmonary aspergillosis (IPA), a life-threatening infection in immunocompromised patients. During the course of IPA, localised areas of tissue hypoxia occur. Bacterial infection models revealed that hypoxic microenvironments modulate the function of host immune cells.
View Article and Find Full Text PDFThe mold Aspergillus fumigatus causes life-threatening infections in immunocompromised patients. Over the past decade, new findings in research have improved our understanding of A. fumigatus-host interactions, including the recent identification of myeloid-expressed hypoxia-inducible factor 1α (HIF-1α) as a relevant immune-modulating transcription factor and potential therapeutic target in anti-fungal defense.
View Article and Find Full Text PDFThe initial stages of the interaction between the host and Aspergillus fumigatus at the alveolar surface of the human lung are critical in the establishment of aspergillosis. Using an in vitro bilayer model of the alveolus, including both the epithelium (human lung adenocarcinoma epithelial cell line, A549) and endothelium (human pulmonary artery epithelial cells, HPAEC) on transwell membranes, it was possible to closely replicate the in vivo conditions. Two distinct sub-groups of dendritic cells (DC), monocyte-derived DC (moDC) and myeloid DC (mDC), were included in the model to examine immune responses to fungal infection at the alveolar surface.
View Article and Find Full Text PDFAspergillus fumigatus is responsible for severe and often fatal infections in immunocompromised patients. The human immune response against this pathogenic mould is still not fully understood. Recently, microRNAs (miRNAs) have been characterized as regulators of inflammation and immune response in various diseases.
View Article and Find Full Text PDFIn immunocompromised patients, invasive aspergillosis (IA) is the most frequent disease caused by the pathogenic mould Aspergillus fumigatus. Fever is one of the most common yet nonspecific clinical symptoms of IA. To evaluate the role of hyperthermia in the innate immune response to A.
View Article and Find Full Text PDF