Background: Image-driven dose escalation to tumor subvolumes has been proposed to improve treatment outcome in head and neck cancer (HNC). We used F-fluorodeoxyglucose (FDG) positron emission tomography (PET) acquired at baseline and into treatment (interim) to identify biologic target volumes (BTVs). We assessed the feasibility of interim dose escalation to the BTV with proton therapy by simulating the effects to organs at risk (OARs).
View Article and Find Full Text PDFBackground And Purpose: Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) describes tissue microvasculature and has prognostic and predictive potential in radiotherapy for head and neck cancer (HNC). However, lack in standardization of DCE-MRI hinders comparison of studies and clinical implementation. This study investigated the accuracy and robustness of the population arterial input function (AIF), correlations between pharmacokinetic parameters and their association to T stage and human papillomavirus (HPV) status for HNC.
View Article and Find Full Text PDFBackground: This study aimed to develop fully automated script-based radiotherapy treatment plans for cervical cancer patients, and evaluate them against clinically accepted plans, as validation before clinical implementation.
Material And Methods: In this retrospective planning study, treatment plans for 25 locally advanced cervical cancer (LACC) patients with up to three dose levels were included. Fully automated plans were created using an in-house developed Python script in RayStation, and compared to clinically accepted manually made plans.
Aim: To train and validate a comprehensive deep-learning (DL) segmentation model for loco-regional breast cancer with the aim of clinical implementation.
Methods: DL segmentation models for 7 clinical target volumes (CTVs) and 11 organs at risk (OARs) were trained on 170 left-sided breast cancer cases from two radiotherapy centres in Norway. Another 30 patient cases were used for validation, which included the evaluation of Dice similarity coefficient and Hausdorff distance, qualitative scoring according to clinical usability, and relevant dosimetric parameters.