Inflammatory bowel disease (IBD) is a chronic, relapsing inflammation disorder of the gastrointestinal tract characterized by disrupted intestinal epithelial barrier function. Despite advances in treatment, including biological agents, achieving sustained remission remains challenging for many patients with IBD. This highlights the urgent need for novel therapeutic strategies.
View Article and Find Full Text PDFLiver fibrosis is the consequence of various chronic liver diseases, resulting in accumulation of extracellular matrix, following the activation and proliferation of hepatic stellate cells (HSCs). Based on the milk-derived extracellular vesicles' (MDEs') characteristics and biological proprieties, we investigate whether MDEs may regulate fibrotic progression by inhibiting HSCs' activation via the MDEs' miRNA content. In order to study this question, we examined the effect of human and cow MDEs on HSCs isolated from murine livers, on activation, proliferation and their proteins' expression.
View Article and Find Full Text PDFJ Pediatr Gastroenterol Nutr
January 2022
Objective: The highly expressed microRNAs (miRNAs) in milk are known as beneficial miRNAs, such as mir148a-3p, which is related to immune system development and disease prevention. There is a need to study their expression and secretion regulatory mechanism in breast milk. We hypothesize that oxytocin can be involved in the regulation of expression and secretion of milk-derived miRNAs.
View Article and Find Full Text PDFThe aim of this study was to investigate the therapeutic effect of cow and human milk derived exosomes (MDEs) on colitis. We used gavage administration of fluorescent labeled MDEs to track their localization patterns in vivo and studied their therapeutic effect on colitis in a dextran sulfate sodium (DSS)-induced colitis model. MDEs attenuated the severity of colitis induced by DSS and statistically reduced the histopathological scoring grade and shortening of the colon.
View Article and Find Full Text PDFThe glutathione S-transferase (GST) family plays an important role in the adaptation of herbivorous insects to new host plants and other environmental constrains. The family codes for enzymes that neutralize reactive oxygen species and phytotoxins through the conjugation of reduced glutathione. Here, we studied the molecular evolution of the GST family in Bemisia tabaci, a complex of >35 sibling species, differing in their geographic and host ranges.
View Article and Find Full Text PDF