Publications by authors named "Miriane de Oliveira"

Tributyltin (TBT) is an endocrine-disrupting chemical (EDC) related to reproductive dysfunctions. However, few studies have investigated the effects of TBT exposure on mammary gland development. Thus, we assessed whether subacute TBT exposure causes irregularities in mammary gland development.

View Article and Find Full Text PDF

The anti-obesity thyroid hormone, triiodothyronine (T3), and irisin, an exercise- and/or cold-induced myokine, stimulate thermogenesis and energy consumption while decreasing lipid accumulation. The involvement of ATP signaling in adipocyte cell function and obesity has attracted increasing attention, but the crosstalk between the purinergic signaling cascade and anti-obesity hormones lacks experimental evidence. In this study, we investigated the effects of T3 and irisin in the transcriptomics of membrane-bound purinoceptors, ectonucleotidase enzymes and nucleoside transporters participating in the purinergic signaling in cultured human adipocytes.

View Article and Find Full Text PDF

Thyroid hormones play a significant role in bone development and maintenance, with triiodothyronine (T3) particularly being an important modulator of osteoblast differentiation, proliferation, and maintenance. However, details of the biological processes (BPs) and molecular pathways affected by T3 in osteoblasts remain unclear. To address this issue, primary cultures of human adipose-derived mesenchymal stem cells were subjected to our previously established osteoinduction protocol, and the resultant osteoblast-like cells were treated with 1 nm or 10 nm T3 for 72 h.

View Article and Find Full Text PDF

Background: There are over 500 species in the Passiflora genus, and while some of them are very well known in folk medicine for their anxiolytic effects, very little is known for the other genus representants, which could also present medicinal effects.

Objective: In this study, we performed an interspecific pharmacological comparison of five investigated Passiflora species, all native to Brazil, namely P. bahiensis, P.

View Article and Find Full Text PDF

The coronavirus disease 2019 (COVID-19), caused by the novel coronavirus, SARS-CoV-2, affects tissues from different body systems but mostly the respiratory system, and the damage evoked in the lungs may occasionally result in severe respiratory complications and eventually lead to death. Studies of human respiratory infections have been limited by the scarcity of functional models that mimic in vivo physiology and pathophysiology. In the last decades, organoid models have emerged as potential research tools due to the possibility of reproducing in vivo tissue in culture.

View Article and Find Full Text PDF

Background: An impressive percentage of biomedical advances were achieved through animal research and cell culture investigations. For drug testing and disease researches, both animal models and preclinical trials with cell cultures are extremely important, but present some limitations, such as ethical concern and inability of representing complex tissues and organs. 3D cell cultures arise providing a more realistic in vitro representation of tissues and organs.

View Article and Find Full Text PDF

Obesity is a worldwide health problem which have reached pandemic proportions, now also including low and middle-income countries. Excessive or abnormal fat deposition in the abdomen especially in the visceral compartment is tightly associated with a high metabolic risk for arterial hypertension, type II diabetes, cardiovascular diseases, musculoskeletal disorders (especially articular degeneration) and some cancers. Contrariwise, accumulation of fat in the subcutaneous compartment has been associated with a neutral metabolic impact, favoring a lower risk of insulin resistance.

View Article and Find Full Text PDF

Obesity patients are more susceptible to develop COVID-19 severe outcome due to the role of angiotensin-converting enzyme 2 (ACE2) in the viral infection. ACE2 is regulated in the human cells by different genes associated with increased (TLR3, HAT1, HDAC2, KDM5B, SIRT1, RAB1A, FURIN and ADAM10) or decreased (TRIB3) virus replication. RNA-seq data revealed 14857 genes expressed in human subcutaneous adipocytes, including genes mentioned above.

View Article and Find Full Text PDF

Triiodothyronine (T3) and irisin (I) can modulate metabolic status, increase heat production, and promote differentiation of white adipose tissue (WAT) into brown adipose tissue (BAT). Herein, human subcutaneous white adipocytes were treated with 10 nM T3 or 20 nM I for 24 h to evaluate intracellular lipid accumulation, triglyceride, and glycerol levels, oxidative stress, DNA damage, and protein levels of uncoupling protein 1 (UCP1), adiponectin, leptin, peroxisome proliferator-activated receptor gamma (PPARγ), and fibronectin type III domain-containing protein 5 (FNDC5). T3 and irisin improved UCP1 production, lipid profile, oxidative stress, and DNA damage.

View Article and Find Full Text PDF

Adiponectin and leptin, important for metabolic regulation, are synthesized and secreted by adipose tissue and are influenced by triiodothyronine (T3) that activates the MAPK/ERK and integrin αVβ3 pathways, modulating gene expression. Adipocytes were treated with T3 (10 nM), for 1 h, in the absence or presence of PD98059 (PD) and tetraiodothyroacetic acid (Tetrac), which are pathways inhibitors. The cells were incubated with Adipo Red/Oil Red O reagents, and intracellular lipid accumulation [glycerol and triacylglycerol (TAG)], MTT, 8-hydroxideoxyguanosine (8-OH-dG), and mRNA and protein expression were assessed.

View Article and Find Full Text PDF
Article Synopsis
  • Triiodothyronine (T) and estrogen (E) are essential for bone remodeling and influence RANKL and OPG signaling in osteoblasts, but their specific molecular actions under hyperthyroidism are not well understood.!* -
  • The study investigated the effects of physiological levels of E and T on RANKL and OPG gene expression in human osteoblasts, using techniques such as real-time PCR and protein assays to analyze the results.!* -
  • Findings revealed that E boosts OPG expression in the presence of T and helps restore bone matrix under hyperthyroid conditions, emphasizing E's protective role in maintaining bone health when T levels are high.!*
View Article and Find Full Text PDF

A considerable increase in endocrine abnormalities has been reported over the last few decades worldwide. A growing exposure to endocrine-disrupting chemicals (EDCs) can be one of the causes of endocrine disorders in populations, and these disorders are not only restricted to the metabolic hormone system but can also cause abnormal functions. Thyroid hormone (TH) disruption is defined as an abnormal change in TH production, transport, function, or metabolism, which results in some degree of impairment in body homeostasis.

View Article and Find Full Text PDF

Adipose tissue (AT), an endocrine organ that modulates several physiological functions by synthesizing and releasing adipokines such as adiponectin, is a metabolic target of triiodothyronine (T3). T3 and adiponectin play important roles in controlling normal metabolic functions such as stimulation of fatty acid oxidation and increase in thermogenesis. The phosphatidylinositol 3-kinase (PI3K) pathway is important for the differentiation of preadipocytes into adipocytes and can be activated by T3 for the transcription of specific genes, such as adiponectin.

View Article and Find Full Text PDF

White adipose tissue (WAT) dysfunction and obesity are a consequence of a low-grade inflammation state. These WAT irregularities could result from abnormal metabolic renin-angiotensin system (RAS) control. Recently, tributyltin (TBT) has been found to play a critical role in these metabolic irregularities.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on human adipose tissue-derived stem cells (hASCs), highlighting their ability to self-renew and differentiate into osteoblasts, which are crucial for bone tissue repair.
  • Researchers observed and analyzed the expression of various proteins and genes related to osteoblast differentiation, using methods like real-time PCR and immunofluorescence, to ensure cell viability throughout the process.
  • Results showed successful bone matrix formation and high cell viability after differentiation, confirming the effectiveness of the proposed methodology in assessing stem cell health during various stages of isolation and differentiation.
View Article and Find Full Text PDF
Article Synopsis
  • lncRNAs are becoming increasingly important as regulators of various biological processes, but their diverse mechanisms make them challenging to study, particularly in terms of understanding molecular functions.
  • A new lncRNA named Klhl14-AS has been discovered as the most abundant transcript in the developing thyroid of mice, with at least five unique splicing variants identified.
  • Klhl14-AS shows varying expression levels across several adult mouse tissues, including thyroid, lung, kidney, and brain, with cell type-specific expression patterns suggesting potential functional roles in different organs.
View Article and Find Full Text PDF

Objective: The current study was aimed at analyzing sarcoplasmic reticulum Ca2+ ATPase (Serca2) and ryanodine receptor type 2 (Ryr2) gene expression in rats subjected to surgery that induced HF and were subsequently treated with T4 using physiological doses.

Materials And Methods: HF was induced in 18 male Wistar rats by clipping the ascending thoracic aorta to generate aortic stenosis (HFS group), while the control group (9-sham) underwent thoracotomy. After 21 weeks, the HFS group was subdivided into two subgroups.

View Article and Find Full Text PDF

High expression levels of hypoxia inducing factor 1 alpha are related to mammary carcinogenesis. In previous studies, we demonstrated that expression of transforming growth factor alpha increases upon treatment with triiodothyronine, but this expression does not occur in cellular models that do not express the estrogen receptor, or when cells are co-treated with the anti-estrogen, tamoxifen. The aim of this study was to determine the effect of the hormone triiodothyronine on the expression of the genes HIF1A and TGFA in the breast cancer cell line MCF7.

View Article and Find Full Text PDF

Objective: To study the effect of different doses of triiodothyronine on gene expression of the adipokines leptin and adiponectin, at different times, and to evaluate the difference in expression between the two adipokines in each group.

Methods: 3T3-L1 adipocytes were incubated with triiodothyronine at physiological dose (10nM) and supraphysiological doses (100nM or 1,000nM), or without triiodothyronine (control, C) for 0.5, 6, or 24 hours.

View Article and Find Full Text PDF

Tributyltin chloride (TBT) is an environmental contaminant used in antifouling paints of boats. Endocrine disruptor effects of TBT are well established in animal models. However, the adverse effects on metabolism are less well understood.

View Article and Find Full Text PDF

Objective: The present study aimed to examine the effects of thyroid hormone (TH), more precisely triiodothyronine (T3), on the modulation of TH receptor alpha (TRα) mRNA expression and the involvement of the phosphatidyl inositol 3 kinase (PI3K) signaling pathway in adipocytes, 3T3-L1, cell culture.

Materials And Methods: It was examined the involvement of PI3K pathway in mediating T3 effects by treating 3T3-L1 adipocytes with physiological (P=10nM) or supraphysiological (SI =100 nM) T3 doses during one hour (short time), in the absence or the presence of PI3K inhibitor (LY294002). The absence of any treatment was considered the control group (C).

View Article and Find Full Text PDF

The thyroid hormones (THs), triiodothyronine (T3) and thyroxine (T4), are essential for survival; they are involved in the processes of development, growth, and metabolism. In addition to hyperthyroidism or hypothyroidism, THs are involved in other diseases. The role of THs in the development and differentiation of mammary epithelium is well established; however, their specific role in the pathogenesis of breast cancer (BC) is controversial.

View Article and Find Full Text PDF

The present study aimed to examine the effects of thyroid hormone (TH), more precisely triiodothyronine (T3), on the modulation of leptin mRNA expression and the involvement of the phosphatidyl inositol 3 kinase (PI3K) signaling pathway in adipocytes, 3T3-L1, cell culture. We examined the involvement of this pathway in mediating TH effects by treating 3T3-L1 adipocytes with physiological (P=10nM) or supraphysiological (SI=100 nM) T3 dose during one hour (short time), in the absence or the presence of PI3K inhibitor (LY294002). The absence of any treatment was considered the control group (C).

View Article and Find Full Text PDF

Objective: To examine the effect of different doses of triiodothyronine (T3) on mRNA levels of thyroid hormone receptors, TRα and TRβ, at different times.

Materials And Methods: 3T3-L1 adipocytes were incubated with T3 (physiological dose: F; supraphysiological doses: SI or SII), or without T3 (control, C) for 0.5, 1, 6, or 24h.

View Article and Find Full Text PDF