J Gerontol A Biol Sci Med Sci
April 2024
Aging entails changes at the cellular level that increase the risk of various pathologies. An association between gut microbiota and age-related diseases has also been attributed. This study aims to analyze changes in fecal microbiota composition and their association with genes related to immune response, gut inflammation, and intestinal barrier impairment.
View Article and Find Full Text PDFFatty acids (FAs) are known to participate in body inflammatory responses. In particular, saturated FAs such as palmitic acid (PA) induce inflammatory signals in macrophages, whereas polyunsaturated FAs, including docosahexaenoic acid (DHA), have been related to anti-inflammatory effects. Several studies have suggested a role of fatty acids on DNA methylation, epigenetically regulating gene expression in inflammation processes.
View Article and Find Full Text PDFThe fact that not all individuals exposed to the same environmental risk factors develop obesity supports the hypothesis of the existence of underlying genetic and epigenetic elements. There is suggestive evidence that environmental stimuli, such as dietary pattern, particularly during pregnancy and early life, but also in adult life, can induce changes in DNA methylation predisposing to obesity and related comorbidities. In this context, the DNA methylation marks of each individual have emerged not only as a promising tool for the prediction, screening, diagnosis, and prognosis of obesity and metabolic syndrome features, but also for the improvement of weight loss therapies in the context of precision nutrition.
View Article and Find Full Text PDFMediators Inflamm
December 2018
DNA methylation has been suggested as a regulatory mechanism behind some inflammatory processes. The physiological actions of methyl donors, such as folic acid, choline, and vitamin B on inflammation-related disease have been associated with the synthesis of the universal methyl donor S-adenosyl methionine (SAM). The aim of this study was to evaluate the effects of folic acid, choline, vitamin B, and a combination of all on preventing the lipopolysaccharide- (LPS-) induced inflammatory response in human THP-1 monocyte/macrophage cells.
View Article and Find Full Text PDFPurpose: The interindividual variable response to weight-loss treatments requires the search for new predictive biomarkers for improving the success of weight-loss programs. The aim of this study is to identify novel genes that distinguish individual responses to a weight-loss dietary treatment by using the integrative analysis of mRNA expression and DNA methylation arrays.
Methods: Subjects from Metabolic Syndrome Reduction in Navarra (RESMENA) project were classified as low (LR) or high (HR) responders depending on their weight loss.
The circadian clock regulates the daily rhythms of several physiological and behavioral processes. Disruptions in clock genes have been associated with obesity and related comorbidities. This study aimed to analyze the association of DNA methylation signatures at circadian rhythm pathway genes with body mass index (BMI), metabolic profiles and dietary intakes.
View Article and Find Full Text PDFObesity is usually associated with low-grade inflammation, which determines the appearance of comorbidities like atherosclerosis and insulin resistance. Infiltrated macrophages in adipose tissue are partly responsible of this inflammatory condition. Numerous studies point to the existence of close intercommunication between macrophages and adipocytes and pay particular attention to the proinflammatory cytokines released by both cell types.
View Article and Find Full Text PDFFolate deficiency has been putatively implicated in the onset of diverse metabolic abnormalities, including insulin resistance, by altering epigenetic processes on key regulatory genes. The calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) is involved in the regulation of critical metabolic processes such as adiposity and glucose homeostasis. This study hypothesized associations between low folate intakes and lower methylation levels of the CAMKK2 gene, with the presence of metabolic alterations in subjects with obesity.
View Article and Find Full Text PDFThe circadian clock system has been linked to the onset and development of obesity and some accompanying comorbidities. Epigenetic mechanisms, such as DNA methylation, are putatively involved in the regulation of the circadian clock system. The aim of this study was to investigate the influence of a weight loss intervention based on an energy-controlled Mediterranean dietary pattern in the methylation levels of 3 clock genes, BMAL1, CLOCK, and NR1D1, and the association between the methylation levels and changes induced in the serum lipid profile with the weight loss treatment.
View Article and Find Full Text PDFChronic inflammation is involved in the onset and development of many diseases, including obesity, atherosclerosis, type 2 diabetes, osteoarthritis, autoimmune and degenerative diseases, asthma, periodontitis, and cirrhosis. The inflammation process is mediated by chemokines, cytokines, and different inflammatory cells. Although the molecules and mechanisms that regulate this primary defense mechanism are not fully understood, recent findings offer a putative role of noncoding RNAs, especially microRNAs (miRNAs), in the progression and management of the inflammatory response.
View Article and Find Full Text PDF