Publications by authors named "Mirian E Casco"

This study is aimed to investigate the types of knot failure (untying or breaking) and the tension required to break different suture diameters. A total of 150 knots were fabricated using polyamide sutures with diameters of 6/0, 7/0, and 8/0. The studied knots were either squared or slipped with different numbers of throws (2, 3, 4, 5, and 6), and the following data were recorded: type of failure (untied or broken), number of throws, the tension required to untie or break each knot, slippage, and elongation of the knot.

View Article and Find Full Text PDF

We report the one-pot mechanochemical synthesis of N-doped porous carbons at room temperature using a planetary ball mill. The fast reaction (5 minutes) between calcium carbide and cyanuric chloride proceeds in absence of any solvent and displays a facile bottom-up strategy that completely avoids typical thermal carbonization steps and directly yields a N-doped porous carbon containing 16 wt% of nitrogen and exhibiting a surface area of 1080 m2 g-1.

View Article and Find Full Text PDF

Methane hydrate inheres the great potential to be a nature-inspired alternative for chemical energy storage, as it allows to store large amounts of methane in a dense solid phase. The embedment of methane hydrate in the confined environment of porous materials can be capitalized for potential applications as its physicochemical properties, such as the formation kinetics or pressure and temperature stability, are significantly changed compared to the bulk system. We review this topic from a materials scientific perspective by considering porous carbons, silica, clays, zeolites, and polymers as host structures for methane hydrate formation.

View Article and Find Full Text PDF

A critical bottleneck for the use of natural gas as a transportation fuel has been the development of materials capable of storing it in a sufficiently compact form at ambient temperature. Here we report the synthesis of a porous monolithic metal-organic framework (MOF), which after successful packing and densification reaches 259 cm (STP) cm capacity. This is the highest value reported to date for conformed shape porous solids, and represents a greater than 50% improvement over any previously reported experimental value.

View Article and Find Full Text PDF

The molecular exchange of CH4 for CO2 in gas hydrates grown in confined nanospace has been evaluated for the first time using activated carbons as a host structure. The nano-confinement effects taking place inside the carbon cavities and the exceptional physicochemical properties of the carbon structure allows us to accelerate the formation and decomposition process of the gas hydrates from the conventional timescale of hours/days in artificial bulk systems to minutes in confined nanospace. The CH4 /CO2 exchange process is fully reversible with high efficiency at practical temperature and pressure conditions.

View Article and Find Full Text PDF

The presence of a highly tunable porous structure and surface chemistry makes metal-organic framework (MOF) materials excellent candidates for artificial methane hydrate formation under mild temperature and pressure conditions (2 °C and 3-5 MPa). Experimental results using MOFs with a different pore structure and chemical nature (MIL-100 (Fe) and ZIF-8) clearly show that the water-framework interactions play a crucial role in defining the extent and nature of the gas hydrates formed. Whereas the hydrophobic MOF promotes methane hydrate formation with a high yield, the hydrophilic one does not.

View Article and Find Full Text PDF

Natural methane hydrates are believed to be the largest source of hydrocarbons on Earth. These structures are formed in specific locations such as deep-sea sediments and the permafrost based on demanding conditions of high pressure and low temperature. Here we report that, by taking advantage of the confinement effects on nanopore space, synthetic methane hydrates grow under mild conditions (3.

View Article and Find Full Text PDF