Spermatozoa contain a complex population of RNAs including messenger RNAs (mRNAs) and small RNAs such as microRNAs (miRNA). It has been reported that these RNAs can be used to understand the mechanisms by which toxicological exposure affects spermatogenesis. The aim of our study was to compare mRNA and miRNA profiles in spermatozoa from eight smokers and eight non-smokers, and search for potential relationships between mRNA and miRNA variation.
View Article and Find Full Text PDFBackground: Divergent transcription is a wide-spread phenomenon in mammals. For instance, short bidirectional transcripts are a hallmark of active promoters, while longer transcripts can be detected antisense from active genes in conditions where the RNA degradation machinery is inhibited. Moreover, many described long non-coding RNAs (lncRNAs) are transcribed antisense from coding gene promoters.
View Article and Find Full Text PDFThe unique architecture of neurons requires the establishment and maintenance of polarity, which relies in part on microtubule-based kinesin motor transport to deliver essential cargo into axons and dendrites. In developing neurons, kinesin trafficking is essential for delivering organelles and molecules that are crucial for elongation and guidance of the growing axonal and dendritic termini. In mature neurons, kinesin cargo delivery is essential for neuron dynamic physiological functions which are critical in brain development.
View Article and Find Full Text PDFWith the aim of developing dendrimer nanovectors with a precisely controlled architecture and flexible structure for DNA transfection, we designed PAMAM dendrimers bearing a triethanolamine (TEA) core, with branching units pointing away from the center to create void spaces, reduce steric congestion, and increase water accessibility for the benefit of DNA delivery. These dendrimers are shown to form stable nanoparticles with DNA, promote cell uptake mainly via macropinocytosis, and act as effective nanovectors for DNA transfection in vitro on epithelial and fibroblast cells and, most importantly, in vivo in the mouse thymus, an exceedingly challenging organ for immune gene therapy. Collectively, these results validate our rational design approach of structurally flexible dendrimers with a chemically defined structure as effective nanovectors for gene delivery, and demonstrate the potential of these dendrimers in intrathymus gene delivery for future applications in immune gene therapy.
View Article and Find Full Text PDFThe Spatial gene is expressed in highly polarized cell types such as testis germ cells, brain neurons and thymic epithelial cells (TEC). Its expression was documented in testis and brain but poorly characterized in thymus. Here, we characterize for the first time Spatial-expressing TEC throughout ontogeny and adult mouse thymus.
View Article and Find Full Text PDF