Publications by authors named "Miriam Wankell"

The hepatic wound repair process involves cell types including healthy and injured hepatocytes, Kupffer and inflammatory cells, sinusoidal endothelial cells (SECs), and hepatic stellate cells (HSCs). Normally, in their quiescent state, HSCs are a reservoir for vitamin A, but in response to hepatic injury, they become activated myofibroblasts that play a key role in the hepatic fibrotic response. Activated HSCs express extracellular matrix (ECM) proteins, elicit anti-apoptotic responses, and proliferate, migrate, and invade hepatic tissues to protect hepatic lobules from damage.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer related deaths in the world, and for patients with advanced disease there are few therapeutic options available. The complex immunological microenvironment of HCC and the success of immunotherapy in several types of tumours, has raised the prospect of potential benefit for immune based therapies, such as immune checkpoint inhibitors (ICIs), in HCC. This has led to significant breakthrough research, numerous clinical trials and the rapid approval of multiple systemic drugs for HCC by regulatory bodies worldwide.

View Article and Find Full Text PDF

Despite advances in the treatment of cancers through surgical procedures and new pharmaceuticals, the treatment of hepatocellular carcinoma (HCC) remains challenging as reflected by low survival rates. The PI3K/Akt/mTOR pathway is an important signaling mechanism that regulates the cell cycle, proliferation, apoptosis, and metabolism. Importantly, deregulation of the PI3K/Akt/mTOR pathway leading to activation is common in HCC and is hence the subject of intense investigation and the focus of current therapeutics.

View Article and Find Full Text PDF

Skeletal muscles represent a complex and highly organised tissue responsible for all voluntary body movements. Developed through an intricate and tightly controlled process known as myogenesis, muscles form early in development and are maintained throughout life. Due to the constant stresses that muscles are subjected to, skeletal muscles maintain a complex course of regeneration to both replace and repair damaged myofibers and to form new functional myofibers.

View Article and Find Full Text PDF

Hepatocellular carcinoma is rapidly becoming a major cause of global mortality due to the ever-increasing prevalence of obesity. DNA damage is known to play an important role in cancer initiation, however DNA repair systems are also vital for the survival of cancer cells. Given the function of the liver and its exposure to the gut, it is likely that DNA damage and repair would be of particular importance in hepatocellular carcinoma.

View Article and Find Full Text PDF

Hepatocellular carcinoma is rapidly becoming one of the leading causes of cancer-related deaths, largely due to the increasing incidence of non-alcoholic fatty liver disease. This in part may be attributed to Westernised diets high in fructose sugar. While many studies have shown the effects of fructose on inducing metabolic-related liver diseases, little research has investigated the effects of fructose sugar on liver cancer metabolism.

View Article and Find Full Text PDF

Liver cancer is a poor prognosis cancer with limited treatment options. To develop a new therapeutic approach, we derived HCC cells from a known model of murine hepatocellular carcinoma (HCC). We treated adiponectin (APN) knock-out mice with the carcinogen diethylnitrosamine, and the resulting tumors were 7-fold larger than wild-type controls.

View Article and Find Full Text PDF

In just over a generation overweight and obesity has become a worldwide health concern. The ramifications for this on future health care costs and longevity are consequent, whilst increased adiposity is a harbinger for diabetes, kidney and bone failure, and cancer. An area of intense interest where the role of adiposity is avidly discussed is in inflammatory bowel disease (IBD), which presents mainly as Crohn's disease (CD) and ulcerative colitis (UC).

View Article and Find Full Text PDF

Activation of the adiponectin (APN) signaling axis retards liver fibrosis. However, understanding of the role of AdipoR1 and AdipoR2 in mediating this response is still rudimentary. Here, we sought to elucidate the APN receptor responsible for limiting liver fibrosis by employing AdipoR1 and AdipoR2 knock-out mice in the carbon tetrachloride (CCl) model of liver fibrosis.

View Article and Find Full Text PDF

Adiponectin demonstrates beneficial effects in various metabolic diseases, including diabetes, and in bowel cancer. Recent data also suggest a protective role in colitis. However, the precise molecular mechanisms by which adiponectin and its receptors modulate colitis and the nature of the adaptive immune response in murine models are yet to be elucidated.

View Article and Find Full Text PDF

Ets2 has both tumor repressive and supportive functions for different types of cancer. We have investigated the role of Ets2 within intestinal epithelial cells in postnatal mouse colon development and tumorigenesis. Conditional inactivation of Ets2 within intestinal epithelial cells results in over representation of Ets2-deficient colon crypts within young and adult animals.

View Article and Find Full Text PDF

Bcl-2 inhibitor of transcription (Bit1) is a mitochondrial protein that functions as a peptidyl-tRNA hydrolase, but, when released into the cytoplasm, it elicits apoptosis. The proapoptotic function is uniquely counteracted by integrin-mediated cell attachment. We generated a conditional KO mouse of the Bit1 gene by using the Cre-LoxP recombination system.

View Article and Find Full Text PDF

Activins are members of the transforming growth factor-beta (TGF-beta) family and are important for skin morphogenesis and wound healing. TGF-beta1 is necessary for the population of the epidermis with Langerhans cells (LC). However, a role for activin in LC biology is not known.

View Article and Find Full Text PDF

We recently identified the gene encoding the activin betaA chain as a novel injury-regulated gene. We showed that activin over-expression in the skin of transgenic mice enhances the speed of wound healing but also the scarring response. By contrast, inhibition of activin action by over-expression of the activin antagonist follistatin caused a severe delay in wound repair, but the quality of the healed wound was improved.

View Article and Find Full Text PDF

Teeth form as ectodermal appendages, and their morphogenesis is regulated by conserved signaling pathways. The shape of the tooth crown results from growth and folding of inner dental epithelium, and the cusp patterning is regulated by transient signaling centers, the enamel knots. Several signal proteins in the transforming growth factor-beta (TGF beta) superfamily are required for tooth development.

View Article and Find Full Text PDF

Activin is a member of the transforming growth factor beta family of growth and differentiation factors. Initially discovered as a protein that stimulates release of follicle-stimulating hormone, it is now well accepted as an important regulator of cell growth and differentiation. Most interestingly, a series of previous studies have revealed novel roles of activin in inflammation and repair.

View Article and Find Full Text PDF

The intermediate filament protein keratin 8 (K8) is critical for the development of most mouse embryos beyond midgestation. We find that 68% of K8-/- embryos, in a sensitive genetic background, are rescued from placental bleeding and subsequent death by cellular complementation with wild-type tetraploid extraembryonic cells. This indicates that the primary defect responsible for K8-/- lethality is trophoblast giant cell layer failure.

View Article and Find Full Text PDF