For doubled haploid (DH) production in maize, F1 generation has been the most frequently used for haploid induction due to facility in the process. However, using F2 generation would be a good alternative to increase genetic variability owing to the additional recombination in meiosis. Our goals were to compare the effect of F1 and F2 generations on DH production in tropical germplasm, evaluating the R1-navajo expression in seeds, the working steps of the methodology, and the genetic variability of the DH lines obtained.
View Article and Find Full Text PDFMaize genotypes can show different responsiveness to inoculation with Azospirillum brasilense and an intriguing issue is which genes of the plant are involved in the recognition and growth promotion by these Plant Growth-Promoting Bacteria (PGPB). We conducted Genome-Wide Association Studies (GWAS) using additive and heterozygous (dis)advantage models to find candidate genes for root and shoot traits under nitrogen (N) stress and N stress plus A. brasilense.
View Article and Find Full Text PDFSeveral studies have shown differences in the abilities of maize genotypes to facilitate or impede Azospirillum brasilense colonization and to receive benefits from this association. Hence, our aim was to study the genetic control, heterosis effect and the prediction accuracy of the shoot and root traits of maize in response to A. brasilense.
View Article and Find Full Text PDFOur study indicates that copy variants may play an essential role in the phenotypic variation of complex traits in maize hybrids. Moreover, predicting hybrid phenotypes by combining additive-dominance effects with copy variants has the potential to be a viable predictive model. Non-additive effects resulting from the actions of multiple loci may influence trait variation in single-cross hybrids.
View Article and Find Full Text PDF