Publications by authors named "Miriam Schrafl-Altermatt"

Bimanual coordination is essential for the performance of many everyday tasks. There are several types of bimanually coordinated movements, classified according to whether the arms are acting to achieve a single goal (cooperative) or separate goals (independent), and whether the arms are moving symmetrically or asymmetrically. Symmetric bimanual movements are thought to facilitate corticomotor excitability (CME), while asymmetric bimanual movements are thought to recruit interhemispheric inhibition to reduce functional coupling between the motor cortices.

View Article and Find Full Text PDF

The aim of this study was to examine whether older adults use the same task-specific brain activation patterns during two different bimanual hand movement tasks as younger adults. Functional magnetic resonance brain imaging was performed in 18 younger (mean age: 30.3 ± 3.

View Article and Find Full Text PDF

Cooperative hand movements are known to be controlled by a task-specific neural coupling associated with an involvement of the respective ipsilateral hemispheres. The aim of this study was to explore in how far this neural control applies to and is modulated during various, fine and gross, cooperative hand movements required during activities of daily living. Somatosensory evoked potentials and contralateral electromyographic reflex responses to unilateral ulnar nerve stimulation were simultaneously recorded in healthy participants during three different cooperative hand movement tasks and a resting condition.

View Article and Find Full Text PDF

The aim of this study was to evaluate the influence of unilateral reduction of afferent input on the 'neural coupling' mechanism during cooperative hand movements. This 'neural coupling' is reflected in the task-specific appearance of contralateral reflex responses in forearm muscles to unilateral arm nerve stimulation. Sensory input from the right hand was reduced by ischemic nerve block at the right wrist.

View Article and Find Full Text PDF

Human arm swing looks and feels highly automated, yet it is increasingly apparent that higher centres, including the cortex, are involved in many aspects of locomotor control. The addition of a cognitive task increases arm swing asymmetry during walking, but the characteristics and mechanism of this asymmetry are unclear. We hypothesized that this effect is lateralized and a Stroop word-colour naming task-primarily involving left hemisphere structures-would reduce right arm swing only.

View Article and Find Full Text PDF

We investigated the role of ipsilateral ascending pathways in the neural coupling underlying cooperative hand movements of stroke subjects. Ipsi- and contralateral somatosensory evoked potentials (SSEP) were recorded following ulnar nerve stimulation during cooperative and non-cooperative hand movements. The amplitude ratio, that is, ipsilateral divided by contralateral amplitude, was highest during the cooperative task when the affected arm was stimulated, reflecting an enhanced afferent volley to the unaffected hemisphere.

View Article and Find Full Text PDF

The aim of this study was to evaluate the effect of a continuous locomotor training on leg muscle electromyographic (EMG) exhaustion during assisted stepping movements in a patient with motor complete spinal cord injury (SCI). EMG exhaustion and loss of potentials starts to develop in untrained patients at ∼6 months after injury. In the trained patient examined in this study, exhaustion was also observed but occurred with a delay of several months.

View Article and Find Full Text PDF

In recent years it has become evident that, in a number of functional movements, synergistically acting limbs become task-specifically linked by a soft-wired 'neural coupling' mechanism (e.g. the legs during balancing, the arms and legs during gait and both arms during cooperative hand movements).

View Article and Find Full Text PDF

Objective: Recent research indicates a task-specific neural coupling controlling cooperative hand movements reflected in bilateral electromyographic reflex responses in arm muscles following unilateral nerve stimulation. Reorganization of this mechanism was explored in post-stroke patients in this study.

Methods: Electromyographic reflex responses in forearm muscles to unilateral electrical ulnar nerve stimulation were examined during cooperative and non-cooperative hand movements.

View Article and Find Full Text PDF

Task-specific neural coupling during cooperative hand movements has been described in healthy volunteers, manifested by bilateral reflex electromyographic responses in forearm muscles following unilateral ulnar nerve stimulation and by task-specific activation of secondary somatosensory cortical areas (S2) in functional MRI. The aim of this study was to investigate the role of sensory input to the ipsilateral and contralateral cortex during a cooperative task. Somatosensory evoked potentials from the ulnar nerve were recorded over the ipsilateral and contralateral cortex during resting and during cooperative and noncooperative hand movements.

View Article and Find Full Text PDF

The neural control of "cooperative" hand movements reflecting "opening a bottle" was explored in human subjects by electromyographic (EMG) and functional magnetic resonance imaging (fMRI) recordings. EMG responses to unilateral nonnoxious ulnar nerve stimulation were analyzed in the forearm muscles of both sides during dynamic movements against a torque applied by the right hand to a device which was compensated for by the left hand. For control, stimuli were applied while task was performed in a static/isometric mode and during bilateral synchronous pro-/supination movements.

View Article and Find Full Text PDF