Objectives: Robustness of radiomic features in physiological tissue is an important prerequisite for quantitative analysis of tumor biology and response assessment. In contrast to previous studies which focused on different tumors with mostly short scan-re-scan intervals, this study aimed to evaluate the robustness of radiomic features in cancer-free patients and over a clinically encountered inter-scan interval.
Materials And Methods: Patients without visible tumor burden who underwent at least two portal-venous phase dual energy CT examinations of the abdomen between May 2016 and January 2020 were included, while macroscopic tumor burden was excluded based upon follow-up imaging for all patients (≥3 months).
Objectives: Positron emission tomography (PET) is currently considered the non-invasive reference standard for lymph node (N-)staging in lung cancer. However, not all patients can undergo this diagnostic procedure due to high costs, limited availability, and additional radiation exposure. The purpose of this study was to predict the PET result from traditional contrast-enhanced computed tomography (CT) and to test different feature extraction strategies.
View Article and Find Full Text PDFPurpose: The bone marrow's iodine uptake in dual-energy CT (DECT) is elevated in malignant disease. We aimed to investigate the physiological range of bone marrow iodine uptake after intravenous contrast application, and examine its dependence on vBMD, iodine blood pool, patient age, and sex.
Method: Retrospective analysis of oncological patients without evidence of metastatic disease.
Background: Diagnosing a coronavirus disease 2019 (COVID-19) infection with high specificity in chest computed tomography (CT) imaging is considered possible due to distinctive imaging features of COVID-19 pneumonia. Since other viral non-COVID pneumonia show mostly a different distribution pattern, it is reasonable to assume that the patterns observed caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are a consequence of its genetically encoded molecular properties when interacting with the respiratory tissue. As more mutations of the initial SARS-CoV-2 wild-type with varying aggressiveness have been detected in the course of 2021, it became obvious that its genome is in a state of transformation and therefore a potential modification of the specific morphological appearance in CT may occur.
View Article and Find Full Text PDFObjectives: Differentiation between COVID-19 and community-acquired pneumonia (CAP) in computed tomography (CT) is a task that can be performed by human radiologists and artificial intelligence (AI). The present study aims to (1) develop an AI algorithm for differentiating COVID-19 from CAP and (2) evaluate its performance. (3) Evaluate the benefit of using the AI result as assistance for radiological diagnosis and the impact on relevant parameters such as accuracy of the diagnosis, diagnostic time, and confidence.
View Article and Find Full Text PDFBackground: The extent of lung involvement in coronavirus disease 2019 (COVID-19) pneumonia, quantified on computed tomography (CT), is an established biomarker for prognosis and guides clinical decision-making. The clinical standard is semi-quantitative scoring of lung involvement by an experienced reader. We aim to compare the performance of automated deep-learning- and threshold-based methods to the manual semi-quantitative lung scoring.
View Article and Find Full Text PDFVirtual non-calcium (VNCa) images from dual-energy computed tomography (DECT) have shown high potential to diagnose bone marrow disease of the spine, which is frequently disguised by dense trabecular bone on conventional CT. In this study, we aimed to define reference values for VNCa bone marrow images of the spine in a large-scale cohort of healthy individuals. DECT was performed after resection of a malignant skin tumor without evidence of metastatic disease.
View Article and Find Full Text PDFEur Radiol
May 2022
Objectives: To demonstrate the feasibility of an automated, non-invasive approach to estimate bone marrow (BM) infiltration of multiple myeloma (MM) by dual-energy computed tomography (DECT) after virtual non-calcium (VNCa) post-processing.
Methods: Individuals with MM and monoclonal gammopathy of unknown significance (MGUS) with concurrent DECT and BM biopsy between May 2018 and July 2020 were included in this retrospective observational study. Two pathologists and three radiologists reported BM infiltration and presence of osteolytic bone lesions, respectively.
Computed tomography in suspected urolithiasis provides information about the presence, location and size of stones. Particularly stone size is a key parameter in treatment decision; however, data on impact of reformatation and measurement strategies is sparse. This study aimed to investigate the influence of different image reformatations, slice thicknesses and window settings on stone size measurements.
View Article and Find Full Text PDFPurpose: To develop a deep-learning (DL)-based approach for thoracic lymph node (LN) mapping based on their anatomical location.
Method: The training-and validation-dataset included 89 contrast-enhanced computed tomography (CT) scans of the chest. 4201 LNs were semi-automatically segmented and then assigned to LN levels according to their anatomical location.
Objectives: Dual-energy computed tomography (DECT)-derived quantification of iodine concentration (IC) is increasingly used in oncologic imaging to characterize lesions and evaluate treatment response. However, only limited data are available on intraindividual consistency of IC and its variation. This study investigates the longitudinal reproducibility of IC in organs, vessels, and lymph nodes in a large cohort of healthy patients who underwent repetitive DECT imaging.
View Article and Find Full Text PDFBackground: Compared to histology-based methods, imaging can reduce animal usage in preclinical studies. However, availability of dedicated scanners is limited. We evaluated clinical computed tomography (CT) and magnetic resonance imaging (MRI) in comparison to dedicated CT (micro-CT) for assessing therapy effects in lung cancer-bearing mice.
View Article and Find Full Text PDFUnlabelled: KRAS-mutant lung adenocarcinoma is among the most common cancer entities and, in advanced stages, typically displays poor prognosis due to acquired resistance against chemotherapy, which is still largely based on cisplatin-containing combination regimens. Mechanisms of cisplatin resistance have been extensively investigated, and ERCC1 has emerged as a key player due to its central role in the repair of cisplatin-induced DNA lesions. However, clinical data have not unequivocally confirmed ERCC1 status as a predictor of the response to cisplatin treatment.
View Article and Find Full Text PDF