Publications by authors named "Miriam Menzel"

Three-Dimensional Polarized Light Imaging (3D-PLI) and Computational Scattered Light Imaging (ComSLI) map dense nerve fibers in brain sections with micrometer resolution using visible light. 3D-PLI reconstructs single fiber orientations, while ComSLI captures multiple directions per pixel, offering deep insights into brain tissue structure. Here, we introduce the Scattering Polarimeter, a high-speed correlative microscope to leverage the strengths of both methods.

View Article and Find Full Text PDF

Fourier Ptychographic Microscopy (FPM) provides high-resolution imaging and morphological information over large fields of view, while Computational Scattered Light Imaging (ComSLI) excels at mapping interwoven fiber organization in unstained tissue sections. This study introduces Fourier Ptychographic Scattered Light Microscopy (FP-SLM), a new multi-modal approach that combines FPM and ComSLI analyses to create both high-resolution phase-contrast images and fiber orientation maps from a single measurement. The method is demonstrated on brain sections (frog, monkey) and sections from thigh muscle and knee (mouse).

View Article and Find Full Text PDF

Detailed knowledge of the brain's nerve fiber network is crucial for understanding its function in health and disease. However, mapping fibers with high resolution remains prohibitive in most histological sections because state-of-the-art techniques are incompatible with their preparation. Here, we present a micron-resolution light-scattering-based technique that reveals intricate fiber networks independent of sample preparation for extended fields of view.

View Article and Find Full Text PDF

Disentangling human brain connectivity requires an accurate description of nerve fiber trajectories, unveiled via detailed mapping of axonal orientations. However, this is challenging because axons can cross one another on a micrometer scale. Diffusion magnetic resonance imaging (dMRI) can be used to infer axonal connectivity because it is sensitive to axonal alignment, but it has limited spatial resolution and specificity.

View Article and Find Full Text PDF
Article Synopsis
  • Myelinated axons transmit signals in the brain through action potentials, but accurately mapping their crossing paths is challenging due to influence from unrelated brain structures.
  • Small-angle X-ray scattering (SAXS) can specifically detect myelinated axons by identifying distinct peaks in their scattering patterns, allowing for better resolution of fiber crossings.
  • The study demonstrates SAXS's effectiveness in various brain samples and positions it as a reliable tool for validating fiber orientations obtained from other imaging techniques like diffusion MRI and microscopy.
View Article and Find Full Text PDF

The method 3D polarised light imaging (3D-PLI) measures the birefringence of histological brain sections to determine the spatial course of nerve fibres (myelinated axons). While the in-plane fibre directions can be determined with high accuracy, the computation of the out-of-plane fibre inclinations is more challenging because they are derived from the amplitude of the birefringence signals, which depends e.g.

View Article and Find Full Text PDF

The correct reconstruction of individual (crossing) nerve fibers is a prerequisite when constructing a detailed network model of the brain. The recently developed technique Scattered Light Imaging (SLI) allows the reconstruction of crossing nerve fiber pathways in whole brain tissue samples with micrometer resolution: the individual fiber orientations are determined by illuminating unstained histological brain sections from different directions, measuring the transmitted scattered light under normal incidence, and studying the light intensity profiles of each pixel in the resulting image series. So far, SLI measurements were performed with a fixed polar angle of illumination and a small number of illumination directions, providing only an estimate of the nerve fiber directions and limited information about the underlying tissue structure.

View Article and Find Full Text PDF

Analyzing the structure of neuronal fibers with single axon resolution in large volumes is a challenge in connectomics. Different technologies try to address this goal; however, they are limited either by the ineffective labeling of the fibers or in the achievable resolution. The possibility of discriminating between different adjacent myelinated axons gives the opportunity of providing more information about the fiber composition and architecture within a specific area.

View Article and Find Full Text PDF

For developing a detailed network model of the brain based on image reconstructions, it is necessary to spatially resolve crossing nerve fibers. The accuracy hereby depends on many factors, including the spatial resolution of the imaging technique. 3D Polarized Light Imaging (3D-PLI) allows the three-dimensional reconstruction of nerve fiber tracts in whole brain sections with micrometer in-plane resolution, but leaves uncertainties in pixels containing crossing fibers.

View Article and Find Full Text PDF

Previous simulation studies by Menzel [Phys. Rev. X10, 021002 (2020)] have shown that scattering patterns of light transmitted through artificial nerve fiber constellations contain valuable information about the tissue substructure such as the individual fiber orientations in regions with crossing nerve fibers.

View Article and Find Full Text PDF

Purpose: The technique 3D polarized light imaging (3D-PLI) allows to reconstruct nerve fiber orientations of postmortem brains with ultra-high resolution. To better understand the physical principles behind 3D-PLI and improve the accuracy and reliability of the reconstructed fiber orientations, numerical simulations are employed which use synthetic nerve fiber models as input. As the generation of fiber models can be challenging and very time-consuming, we have developed the open source FAConstructor tool which enables a fast and efficient generation of synthetic fiber models for 3D-PLI simulations.

View Article and Find Full Text PDF

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

View Article and Find Full Text PDF

When transmitting polarised light through histological brain sections, different types of diattenuation (polarisation-dependent attenuation of light) can be observed: In some brain regions, the light is minimally attenuated when it is polarised parallel to the nerve fibres (referred to as D), in others, it is maximally attenuated (referred to as D). The underlying mechanisms of these effects and their relationship to tissue properties were so far unknown. Here, we demonstrate in experimental studies that diattenuation of both types D and D can be observed in brain tissue samples from different species (rodent, monkey, and human) and that the strength and type of diattenuation depend on the nerve fibre orientations.

View Article and Find Full Text PDF

3D-polarized light imaging (3D-PLI) reconstructs nerve fibers in histological brain sections by measuring their birefringence. This study investigates another effect caused by the optical anisotropy of brain tissue - diattenuation. Based on numerical and experimental studies and a complete analytical description of the optical system, the diattenuation was determined to be below 4 % in rat brain tissue.

View Article and Find Full Text PDF

3D Polarized Light Imaging (3D-PLI) is a neuroimaging technique that has opened up new avenues to study the complex architecture of nerve fibers in postmortem brains. The spatial orientations of the fibers are derived from birefringence measurements of unstained histological brain sections that are interpreted by a voxel-based analysis. This, however, implies that a single fiber orientation vector is obtained for each voxel and reflects the net effect of all comprised fibers.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: