The enteric nervous system (ENS) is responsible for the genesis of motor patterns ensuring an appropriate intestinal transit. Enteric neurons are classified into afferent, interneuron, and motoneuron types, with the latter two being further categorized as excitatory or inhibitory, which cause smooth muscle contraction or inhibition, respectively. Muscle relaxation mechanisms are key for the understanding of physiological processes such as sphincter relaxation, gastric accommodation, or descending peristaltic reflex.
View Article and Find Full Text PDFThe purine receptor involved in inhibitory responses in the gastrointestinal tract has been recently identified. P2Y1 receptor activation mediates the fast component of the inhibitory junction potential (IJPf) and the non-nitrergic relaxation. The aim of the present work has been to investigate which purinergic agonist better mimics endogenous responses.
View Article and Find Full Text PDFInteraction of different neuromyogenic mechanisms determines colonic motility. In rats, cyclic depolarizations and slow waves generate myogenic contractions of low frequency (LF) and high frequency (HF), respectively. Interstitial cells of Cajal (ICC) located near the submuscular plexus (SMP) generate slow waves.
View Article and Find Full Text PDFPurinergic and nitrergic co-transmission is the dominant mechanism responsible for neural-mediated smooth muscle relaxation in the gastrointestinal tract. The aim of the present paper was to test whether or not P2Y(1) receptors are involved in purinergic neurotransmission using P2Y(1)(−/−) knock-out mice. Tension and microelectrode recordings were performed on colonic strips.
View Article and Find Full Text PDF