Objective: To explore the effect of the number of two-dimensional (2D) images and x-ray projection angles on the resolution of reconstructed three-dimensional (3D) volumes of intracochlear electrode arrays in cadaveric cat temporal bones using Tuned Aperture Computed Tomography (TACT).
Design: Multiple 2D radiographs (basis images (BI)) of implanted cadaveric cat temporal bones were acquired using a range of projection angles, and imported into the TACT workbench. 3D volumes were reconstructed using varying numbers of BIs.
Objective: To determine the suitability of Tuned Aperture Computed Tomography (TACT) to generate high-resolution images of intracochlear electrode arrays, in situ, with sufficient anatomic and electrode detail to relate the location of individual electrode contacts to important anatomic landmarks in cat cadaveric temporal bones. The ultimate objective is to develop an imaging technology whereby variations in electrode location, relative to the target neural tissues, can be accurately determined and related to variations in performance with the cochlear implant.
Design: Cat temporal bones were implanted with an experimental scala tympani electrode array and an external fiducial landmark.
The endolymphatic sac is believed to represent one of the primary loci for endolymph volume regulation in the inner ear. Quantitative analysis of physiologic measurements from the endolymphatic sac requires knowledge of the anatomy of the structure, specifically the luminal volume and the variation of cross-sectional area with distance along the sac. Recently techniques have become available to make these measurements.
View Article and Find Full Text PDF