Publications by authors named "Miriam Jauset Rubio"

Trichomoniasis is the most prevalent curable, non-viral sexually transmitted infection (STI), with an estimated 156 million new infections in 2020. It can potentially result in adverse birth outcomes as well as infertility in men, whilst it also increases the risk of acquiring HIV and contracting other vaginal infections. It is mostly prevalent among women in low-income countries and especially in Africa and the Americas.

View Article and Find Full Text PDF
Article Synopsis
  • The detection of single nucleotide polymorphisms (SNPs) is crucial for clinical diagnostics, pharmacogenomics, and forensics, particularly for identifying genetic risks like those associated with osteoporosis.
  • A semiautomated system using solid-phase electrochemical melting curve analysis (éMCA) was developed to identify alleles at specific SNP sites related to bone fracture risks by employing asymmetric isothermal recombinase polymerase amplification.
  • The proof-of-concept utilized a microfluidic device with a multielectrode array, allowing for the effective detection of SNP hetero/homozygosity, particularly at the osteoporosis-related SNP site rs2741856 in real patient samples.
View Article and Find Full Text PDF

Osteoporosis is a multifactorial disease influenced by genetic and environmental factors, which contributes to an increased risk of bone fracture, but early diagnosis of this disease cannot be achieved using current techniques. We describe a generic platform for the targeted electrochemical genotyping of SNPs identified by genome-wide association studies to be associated with a genetic predisposition to osteoporosis. The platform exploits isothermal solid-phase primer elongation with ferrocene-labeled nucleoside triphosphates.

View Article and Find Full Text PDF

The overall objective of this work is the evaluation of different competitive aptamer assays based on inductively coupled plasma mass spectrometry (ICP-MS) detection for the determination of β-conglutin (food protein allergen from lupin) in flour samples. To this end, two competitive aptamer assay schemes were developed using either thiolated aptamers chemisorbed onto gold nanoparticles (AuNPs) or biotinylated aptamers linked to streptavidin-AuNPs. The influence of ICP-MS detection mode (i.

View Article and Find Full Text PDF

Retinol-binding protein 4 (RBP4) has been implicated in insulin resistance in rodents and humans with obesity and T2DM, making it a potential biomarker for the early diagnosis of T2DM. However, diagnostic tools for low-level detection of RBP4 are still lagging behind. Therefore, there is an urgent need for the development of T2DM diagnostics that are rapid, cost-effective and that can be used at the point-of-care (POC).

View Article and Find Full Text PDF

Aptamer-based assays and sensors are garnering increasing interest as alternatives to antibodies, particularly due to their increased flexibility for implementation in alternative assay formats, as they can be employed in assays designed for nucleic acids, such as molecular aptamer beacons or aptamer detection combined with amplification. In this work, we took advantage of the inherent nucleic acid nature of aptamers to enhance sensitivity in a rapid and facile assay format. An aptamer selected against the anaphylactic allergen β-conglutin was used to demonstrate the proof of concept.

View Article and Find Full Text PDF

The illicit use of anabolic androgenic steroids (AAS) as performance-enhancing drugs remains a global issue threatening not only the credibility of competitive sports but also public health due to the well-documented adverse effects they elicit. AAS abuse is not restricted only to professional sports, but also extends to recreational athletes and adolescents as well as in livestock production as growth-promoting agents. Testosterone and nandrolone are among the AAS most frequently exploited.

View Article and Find Full Text PDF

The novel severe acute respiratory syndrome coronavirus (SARS-CoV-2) emerged at the end of 2019, resulting in the ongoing COVID-19 pandemic. The high transmissibility of the virus and the substantial number of asymptomatic individuals have led to an exponential rise in infections worldwide, urgently requiring global containment strategies. Reverse transcription-polymerase chain reaction is the gold standard for the detection of SARS-CoV-2 infections.

View Article and Find Full Text PDF

Hypertrophic cardiomyopathies (HCM) are the principal cause of sudden cardiac death in young athletes and it is estimated that 1 in 500 people have HCM. The aim of this work was to develop an electrochemical platform for the detection of HCM-associated SNP in the Myosin Heavy Chain 7 (MYH7) gene, in fingerprick blood samples. The platform exploits isothermal solid-phase primer elongation using recombinase polymerase amplification with either individual or a combination of four ferrocene-labelled nucleoside triphosphates.

View Article and Find Full Text PDF

Here, we report the electrochemical detection of single-point mutations using solid-phase isothermal primer elongation with redox-labeled oligonucleotides. A single-base mutation associated with resistance to rifampicin, an antibiotic commonly used for the treatment of , was used as a model system to demonstrate a proof-of-concept of the approach. Four 5'-thiolated primers, designed to be complementary with the same fragment of the target sequence and differing only in the last base, addressing the polymorphic site, were self-assembled via chemisorption on individual gold electrodes of an array.

View Article and Find Full Text PDF

Isothermal recombinase polymerase amplification-based solid-phase primer extension is used for the optical detection of a hypertrophic cardiomyopathy associated single nucleotide polymorphism (SNP) in a fingerprick blood sample. The assay exploits four thiolated primers which have the same sequences with the exception of the 3'-terminal base. Target DNA containing the SNP site hybridizes to all four of the immobilized probes, with primer extension only taking place from the primer containing the terminal base that is complementary to the SNP under interrogation.

View Article and Find Full Text PDF

In previous work, a 93-mer aptamer was selected against the anaphylactic allergen, β-conglutin and truncated to an 11-mer, improving the affinity by two orders of magnitude, whilst maintaining the specificity. This 11-mer was observed to fold in a G-quadruplex, and preliminary results indicated the existence of a combination of monomeric and higher-order structures. Building on this previous work, in the current study, we aimed to elucidate a deeper understanding of the structural forms of this 11-mer and the effect of the structure on its binding ability.

View Article and Find Full Text PDF

Due to the extreme infectivity of Yersinia pestis it poses a serious threat as a potential biowarfare agent, which can be rapidly and facilely disseminated. A cost-effective and specific method for its rapid detection at extremely low levels is required, in order to facilitate a timely intervention for containment. Here, we report an ultrasensitive method exploiting a combination of isothermal nucleic acid amplification with a tailed forward primer and biotinylated dNTPs, which is performed in less than 30 min.

View Article and Find Full Text PDF

We report the duplex amplification of two plasmid DNA markers involved in the virulence of , CAP and PAG, and the direct electrochemical detection of these amplicons. The method consists of the simultaneous amplification of the two targets in a single-pot reaction via polymerase chain reaction (PCR) using tailed primers and ferrocene-labeled dATP. Following amplification, the PCR products hybridize to probes immobilized on electrodes in a microfabricated electrode array chip.

View Article and Find Full Text PDF

Aptamers are well-established biorecognition molecules used in a wide variety of applications for the detection of their respective targets. However, individual SELEX processes typically performed for the identification of aptamers for each target can be quite time-consuming, labor-intensive, and costly. An alternative strategy is proposed herein for the simultaneous identification of different aptamers binding distinct but structurally similar targets in one single selection.

View Article and Find Full Text PDF
Article Synopsis
  • - The study highlights the significance of histamine, a biogenic amine, in physiological functions and allergic reactions, while addressing the limitations of existing chromatography methods for histamine testing in real-time settings.
  • - Researchers utilized a process called SELEX to identify aptamers that bind to histamine, ultimately discovering the H2 aptamer, which has a high binding affinity validated through multiple independent assays.
  • - The H2 aptamer was developed into a competitive assay for detecting histamine in various samples, demonstrating high sensitivity and no adverse matrix effects, with potential applications extending to food spoilage detection.
View Article and Find Full Text PDF
Article Synopsis
  • Karlodinium is a harmful dinoflagellate that causes fish kills globally, with two significant species found in Alfacs Bay, each having different toxicity levels.
  • Researchers developed a method using recombinase polymerase amplification (RPA) combined with an enzyme-linked oligonucleotide assay (ELONA) to quickly and accurately identify and quantify these species.
  • This new method is more effective than traditional microscopy, enabling faster detection at lower concentrations (50,000 cells/L), making it a promising tool for monitoring harmful algal blooms.
View Article and Find Full Text PDF

High-risk pathogens such as Francisella tularensis and Yersinia pestis are categorized as highly hazardous organisms that can be used as biological weapons. Given the extreme infectivity of these potential biowarfare agents, a rapid, sensitive, cost-effective, and specific method for their detection is required. Here, we report the multiplexed amplification detection of genomic DNA from Francisella tularensis and Yersinia pestis.

View Article and Find Full Text PDF

Trichomoniasis, caused by Trichomonas vaginalis, is the leading nonviral sexually transmitted infection worldwide. We report the selection of a DNA aptamer against a T. vaginalis adhesion protein, AP65, using a microtiter plate-based in vitro combinatorial chemistry process termed systematic evolution of ligands by exponential enrichment.

View Article and Find Full Text PDF

DNA biosensors are attractive tools for genetic analysis as there is an increasing need for rapid and low-cost DNA analysis, primarily driven by applications in personalized pharmacogenomics, clinical diagnostics, rapid pathogen detection, food traceability and forensics. A rapid electrochemical genosensor detection methodology exploiting a combination of modified primers for solution-phase isothermal amplification, followed by rapid detection via hybridization on gold electrodes is reported. Modified reverse primers, exploiting a C18 spacer between the primer-binding site and an engineered single stranded tail, are used in a recombinase polymerase amplification reaction to produce an amplicon with a central duplex flanked by two single stranded tails.

View Article and Find Full Text PDF

Sensitive, specific, rapid, inexpensive and easy-to-use nucleic acid tests for use at the point-of-need are critical for the emerging field of personalised medicine for which companion diagnostics are essential, as well as for application in low resource settings. Here we report on the development of a point-of-care nucleic acid lateral flow test for the direct detection of isothermally amplified DNA. The recombinase polymerase amplification method is modified slightly to use tailed primers, resulting in an amplicon with a duplex flanked by two single stranded DNA tails.

View Article and Find Full Text PDF

In this work, different methodologies were evaluated in search of robust, simple, rapid, ultrasensitive, and user-friendly lateral flow aptamer assays. In one approach, we developed a competitive based lateral flow aptamer assay, in which β-conglutin immobilized on the test line of a nitrocellulose membrane and β-conglutin in the test sample compete for binding to AuNP labeled aptamer. The control line exploits an immobilized DNA probe complementary to the labeled aptamer, forcing displacement of the aptamer from the β-conglutin-aptamer complex.

View Article and Find Full Text PDF

Lupin is increasingly being used in a variety of food products due to its nutritional, functional and nutraceutical properties. However, several examples of severe and even fatal food-associated anaphylaxis due to lupin inhalation or ingestion have been reported, resulting in the lupin subunit β-conglutin, being defined as the Lup an 1 allergen by the International Union of Immunological Societies (IUIS) in 2008. Here, we report an innovative method termed aptamer-recombinase polymerase amplification (Apta-RPA) exploiting the affinity and specificity of a DNA aptamer selected against the anaphylactic β-conglutin allergen termed β-conglutin binding aptamer II (β-CBA II), facilitating ultrasensitive detection via isothermal amplification.

View Article and Find Full Text PDF

The rapid and sensitive detection of small molecules is garnering increasing importance, and aptamers show great promise in replacing expensive, elaborate detection platforms exploiting chromatographic separation or antibody-based assays. The characterization of aptamer interaction with small molecule targets is not facile, and there is a mature need for a rapid, high-throughput technique for the analysis of aptamer-small molecule kinetics and affinity. In this work we present methodologies for the evaluation of aptamer-small molecule interactions, using the aptamers reported against the steroid 17β-estradiol as a model system.

View Article and Find Full Text PDF

An aptamer was previously selected against the anaphylactic allergen β-conglutin (β-CBA I), which was subsequently truncated to an 11-mer and the affinity improved by two orders of magnitude. The work reported here details the selection and characterisation of a second aptamer (β-CBA II) selected against a second aptatope on the β-conglutin target. The affinity of this second aptamer was similar to that of the 11-mer, and its affinity was confirmed by three different techniques at three independent laboratories.

View Article and Find Full Text PDF