Publications by authors named "Miriam Gavriliuc"

Ribosome translocation catalyzed by elongation factor G (EF-G) is a critical step in protein synthesis where the ribosome typically moves along the mRNA by three nucleotides at each step. To investigate the mechanism of EF-G catalysis, it is essential to precisely resolve the ribosome motion at both ends of the mRNA, which, to our best knowledge, is only achieved with the magnetic-based force spectroscopy developed by our groups. Here, we introduce a novel multiplexed force spectroscopy technique that, for the first time, offers single-nucleotide resolution for multiple samples.

View Article and Find Full Text PDF

While elongation factor G (EF-G) is crucial for ribosome translocation, the role of its GTP hydrolysis remains ambiguous. EF-G's indispensability is further exemplified by the phosphorylation of human eukaryotic elongation factor 2 (eEF2) at Thr56, which inhibits protein synthesis globally, but its exact mechanism is not clear. In this study, we developed a multi-channel single-molecule FRET (smFRET) microscopy methodology to examine the conformational changes of EF-G induced by mutations that closely aligned with eEF2's Thr56 residue.

View Article and Find Full Text PDF

During ribosome translocation, the elongation factor EF-G undergoes large conformational change while maintaining its contact with the moving tRNA. We previously measured a power stroke accompanying EF-G catalysis, which was consistent with structural studies. However, the role of power stroke in translocation fidelity remains unclear.

View Article and Find Full Text PDF