Insulin induction of glucokinase (GCK) transcription in the liver is essential for maintaining glucose homeostasis. To study the molecular mechanism underlying the regulation of hepatic GCK expression in the carnivorous fish gilthead sea bream (Sparus aurata), we analysed the role of sterol regulatory element binding protein-1a (SREBP-1a) and specificity protein (Sp) 1 in insulin-dependent GCK transcription. Transient transfection experiments performed in HepG2 cells and electrophoretic mobility shift assays allowed us to identify a cis-element in the proximal region of GCK promoter implicated in transactivation by SREBP-1a.
View Article and Find Full Text PDF6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB) catalyzes the synthesis and degradation of fructose-2,6-bisphosphate, a key modulator of glycolysis-gluconeogenesis. To gain insight into the molecular mechanism behind hormonal and nutritional regulation of PFKFB expression, we have cloned and characterized the proximal promoter region of the liver isoform of PFKFB (PFKFB1) from gilthead sea bream (Sparus aurata). Transient transfection of HepG2 cells with deleted gene promoter constructs and electrophoretic mobility shift assays allowed us to identify a sterol regulatory element (SRE) to which SRE binding protein-1a (SREBP-1a) binds and transactivates PFKFB1 gene transcription.
View Article and Find Full Text PDFHerein, we report cloning and subcellular localization of two alanine aminotransferase (ALT) isozymes, cALT and mALT, from liver of gilthead sea bream (Sparus aurata). CHO cells transfected with constructs expressing cALT or mALT as C- or N-terminal fusion with the enhanced green fluorescent protein (EGFP) showed that cALT is cytosolic, whereas mALT localized to mitochondria. Fusion of EGFP to mALT N-terminus or removal of amino acids 1-83 of mALT avoided import into mitochondria, supporting evidence that the mALT N-terminus contains a mitochondrial targeting signal.
View Article and Find Full Text PDF