NKp46 (CD335) is a surface receptor shared by both human and mouse natural killer (NK) cells and innate lymphoid cells (ILCs) that transduces activating signals necessary to eliminate virus-infected cells and tumors. Here, we describe a spontaneous point mutation of cysteine to arginine (C14R) in the signal peptide of the NKp46 protein in congenic Ly5.1 mice and the newly generated NCR strain.
View Article and Find Full Text PDFNatural killer gene complex-encoded immunomodulatory C-type lectin-like receptors include members of the NKRP1 and C-type lectin-like 2 (CLEC2) gene families, which constitute genetically linked receptor-ligand pairs and are thought to allow for NK cell-mediated immunosurveillance of stressed or infected tissues. The mouse C-type lectin-like receptor Nkrp1g was previously shown to form several receptor-ligand pairs with the CLEC2 proteins Clr-d, Clr-f, and Clr-g, respectively. However, the physiological expression of Nkrp1g and its CLEC2 ligands as well as their functional relevance remained poorly understood.
View Article and Find Full Text PDFThe mouse gut epithelium represents a constitutively challenged environment keeping intestinal commensal microbiota at bay and defending against invading enteric pathogens. The complex immunoregulatory network of the epithelial barrier surveillance also involves NK gene complex (NKC)-encoded C-type lectin-like molecules such as NKG2D and Nkrp1 receptors. To our knowledge, in this study, we report the first characterization of the orphan C-type lectin-like molecule Clr-a encoded by the Clec2e gene in the mouse NKC.
View Article and Find Full Text PDFBackground Aims: Natural killer (NK) cells can rapidly respond to transformed and stressed cells and represent an important effector cell type for adoptive immunotherapy. In addition to donor-derived primary NK cells, continuously expanding cytotoxic cell lines such as NK-92 are being developed for clinical applications.
Methods: To enhance their therapeutic utility for the treatment of B-cell malignancies, we engineered NK-92 cells by lentiviral gene transfer to express chimeric antigen receptors (CARs) that target CD19 and contain human CD3ζ (CAR 63.
Pre-emptive cancer immunotherapy by donor lymphocyte infusion (DLI) using cytokine-induced killer (CIK) cells may be beneficial to prevent relapse with a reduced risk of causing graft-versus-host-disease. CIK cells are a heterogeneous effector cell population including T cells (CD3(+) CD56(-) ), natural killer (NK) cells (CD3(-) CD56(+) ) and natural killer T (T-NK) cells (CD3(+) CD56(+) ) that exhibit non-major histocompatibility complex (MHC)-restricted cytotoxicity and are generated by ex vivo expansion of peripheral blood mononuclear cells in the presence of interferon (IFN)-γ, anti-CD3 antibody, interleukin-2 (IL-2) and interleukin-15 (IL-15). To facilitate selective target-cell recognition and enhance specific cytotoxicity against B-cell acute lymphoblastic leukemia (B-ALL), we transduced CIK cells with a lentiviral vector encoding a chimeric antigen receptor (CAR) that carries a composite CD28-CD3ζ domain for signaling and a CD19-specific scFv antibody fragment for cell binding (CAR 63.
View Article and Find Full Text PDFFlagellar type III secretion systems (T3SS) contain an essential cytoplasmic-ring (C-ring) largely composed of two proteins FliM and FliN, whereas an analogous substructure for the closely related non-flagellar (NF) T3SS has not been observed in situ. We show that the spa33 gene encoding the putative NF-T3SS C-ring component in Shigella flexneri is alternatively translated to produce both full-length (Spa33-FL) and a short variant (Spa33-C), with both required for secretion. They associate in a 1:2 complex (Spa33-FL/C2) that further oligomerises into elongated arrays in vitro.
View Article and Find Full Text PDFType III secretion systems (T3SSs) are bacterial membrane-embedded nanomachines designed to export specifically targeted proteins from the bacterial cytoplasm. Secretion through T3SS is governed by a subset of inner membrane proteins termed the 'export apparatus'. We show that a key member of the Shigella flexneri export apparatus, MxiA, assembles into a ring essential for secretion in vivo.
View Article and Find Full Text PDF