Materials that undergo singlet fission are of interest for their use in light-harvesting, photocatalysis, and quantum information science, but their ability to undergo fission can be sensitive to local variations in molecular packing. Herein we employ transient absorption microscopy, molecular dynamics simulations, and electronic structure calculations to interrogate how structures found at the edges of orthorhombic rubrene crystals impact singlet fission. Within a micrometer-scale spatial region at the edges of rubrene crystals, we find that the rate of singlet fission increases nearly 4-fold.
View Article and Find Full Text PDFQuantum confinement in two-dimensional (2D) Ruddlesden-Popper (RP) perovskites leads to the formation of stable quasi-particles, including excitons and biexcitons, the latter of which may enable lasing in these materials. Due to their hybrid organic-inorganic structures and the solution phase synthesis, microcrystals of 2D RP perovskites can be quite heterogeneous, with variations in excitonic and biexcitonic properties between crystals from the same synthesis and even within individual crystals. Here, we employ one- and two-quantum two-dimensional white-light microscopy to systematically study the spatial variations of excitons and biexcitons in microcrystals of a series of 2D RP perovskites BAMAPbI ( = 2-4, BA= butylammonium, MA = methylammonium).
View Article and Find Full Text PDFA time-domain version of photothermal microscopy using an atomic force microscope (AFM) is reported, which we call Fourier transform photothermal (FTPT) spectroscopy, where the delay between two laser pulses is varied and the Fourier transform is computed. An acousto-optic modulator-based pulse shaper sets the delay and phases of the pulses shot-to-shot at 100 kHz, enabling background subtraction and data collection in the rotating frame. The pulse shaper is also used to flatten the pulse spectrum, thereby eliminating the need for normalization by the laser spectrum.
View Article and Find Full Text PDFWe present two-dimensional white-light spectroscopy (2DWL) measurements of binary and ternary bulk heterojunctions of the polymer donor PM6 mixed with state-of-the-art nonfullerene acceptors Y6 or IT4F. The ternary film has a shorter lifetime and faster spectral diffusion than either of the binary films. 2D line shape analysis of the PM6 ground state bleach with a Kubo model determines that all three films have similar amplitudes of fluctuations (Δ = 0.
View Article and Find Full Text PDFSurfaces and interfaces are ubiquitous in nature. From cell membranes, to photovoltaic thin films, surfaces have important function in both biological and materials systems. Spectroscopic techniques have been developed to probe systems like these, such as sum frequency generation (SFG) spectroscopies.
View Article and Find Full Text PDFAOM-based pulse shaping as a method has been shown to provide many advantages in the field of ultrafast spectroscopy, in particular for the creation of phase matched pulse pairs for two-dimensional IR and electronic spectroscopy. In this paper we demonstrate the capabilities of a quartz-based AOM pulse-shaper to provide fine control over the phase and spatial dispersion of ultrafast supercontinuum pulses. We show that by using the Bragg condition, we can define a mask function for our AOM such that the angle of diffraction is constant for all frequencies.
View Article and Find Full Text PDFThe dynamics of electronic transitions in solid-state materials are closely linked to microscopic morphology, but it is challenging to simultaneously characterize their spectral and temporal response with high spatial resolution. We present a time-resolved nonlinear microscopy system using white-light supercontinuum pulses as a broadband light source. This system is capable of correlating nanometer scale sample morphology determined from atomic force topography measurements with broadband transient absorption hyperspectral images and ultrafast 2D white-light spectra, all with a spatial resolution of ≤1 μm.
View Article and Find Full Text PDFWe report on a new broadband, ultrafast two-dimensional white-light (2DWL) spectrometer that utilizes a supercontinuum pump and a supercontinuum probe generated with a ytterbium fiber oscillator and an all-normal dispersion photonic crystal fiber (ANDi PCF). We demonstrate compression of the supercontinuum to sub-20 fs and the ability to collect high quality 2D spectra on films of single-walled carbon nanotubes. Two spectrometer designs are investigated.
View Article and Find Full Text PDFThis paper describes an increase in the yield of collisionally gated photoinduced electron transfer (electron transfer events per collision) from oleate-capped PbS quantum dots (QDs) to benzoquinone (BQ) with increasing temperature (from 0 to 50 °C), due to increased permeability of the oleate adlayer of the QDs to BQ. The same changes in intermolecular structure of the adlayer that increase its permeability to BQ also increase its permeability to the solvent, toluene, resulting in a decrease in viscous drag and an apparent increase in the diffusion coefficient of the QDs, as measured by diffusion-ordered spectroscopy (DOSY) NMR. Comparison of NMR and transient absorption spectra of QDs capped with flexible oleate with those capped with rigid methylthiolate provides evidence that the temperature dependence of the permeability of the oleate ligand shell is due to formation of transient gaps in the adlayer through conformational fluctuations of the ligands.
View Article and Find Full Text PDF