Publications by authors named "Miriam Barlow"

carbapenemase KPC is an important resistance gene that has disseminated globally in response to carbapenem use. It is now being implicated as a resistance determinant in Ceftazidime Avibactam (CAZ-AVI) resistance. Given that CAZ-AVI is a last-resort antibiotic, it is critical to understand how resistance to this drug is evolving.

View Article and Find Full Text PDF

Objectives: We investigated the amino acid substitutions in the GES family of ESBLs that were most likely to be involved in the evolution of carbapenemase activity.

Methods: To identify the substitutions that are functionally important, we analysed the evolutionary history of the GES β-lactamases using an alignment and phylogeny to identify sites in GES that show evidence of positive selection and the selected phenotypes.

Results And Conclusions: Data indicate that the substitutions G170S and G243A are associated with carbapenemase activity.

View Article and Find Full Text PDF

The evolution and dissemination of antibiotic resistance genes throughout the world are clearly affected by the selection and migration of resistant bacteria. However, the relative contributions of selection and migration at a local scale have not been fully explored. We sought to identify which of these factors has the strongest effect through comparisons of antibiotic resistance gene abundance between a distinct location and its surroundings over an extended period of six years.

View Article and Find Full Text PDF

Epistasis influences the gene-environment interactions that shape bacterial fitness through antibiotic exposure, which can ultimately affect the availability of certain resistance phenotypes to bacteria. The substitutions present within confer both cephalosporin and β-lactamase inhibitor resistance. We wanted to compare the evolution of with that of another variant, , which differs in that contains only substitutions that contribute to cephalosporin resistance.

View Article and Find Full Text PDF

Antibiotic resistance is a global human health problem. We partnered with Dignity Health Mercy Medical Center to study antibiotic resistance in clinical isolates. We tested whether growth rates, a sensitive assay used to measure the fitness of bacterial samples, correlate with a clinical test to measure antibiotic resistance.

View Article and Find Full Text PDF

Growth rates are an important tool in microbiology because they provide high throughput fitness measurements. The release of GrowthRates, a program that uses the output of plate reader files to automatically calculate growth rates, has facilitated experimental procedures in many areas. However, many sources of variation within replicate growth rate data exist and can decrease data reliability.

View Article and Find Full Text PDF

Nosocomial outbreaks of bacteria are well documented. Based on these incidents, and the heavy usage of antibiotics in hospitals, it has been assumed that antibiotic resistance evolves in hospital environments. To test this assumption, we studied resistance phenotypes of bacteria collected from patient isolates at a community hospital over a 2.

View Article and Find Full Text PDF

Most studies on the evolution of antibiotic resistance are focused on selection for resistance at lethal antibiotic concentrations, which has allowed the detection of mutant strains that show strong phenotypic traits. However, solely focusing on lethal concentrations of antibiotics narrowly limits our perspective of antibiotic resistance evolution. New high-resolution competition assays have shown that resistant bacteria are selected at relatively low concentrations of antibiotics.

View Article and Find Full Text PDF

The development of reliable methods for restoring susceptibility after antibiotic resistance arises has proven elusive. A greater understanding of the relationship between antibiotic administration and the evolution of resistance is key to overcoming this challenge. Here we present a data-driven mathematical approach for developing antibiotic treatment plans that can reverse the evolution of antibiotic resistance determinants.

View Article and Find Full Text PDF

In the 1960s-1980s, determination of bacterial growth rates was an important tool in microbial genetics, biochemistry, molecular biology, and microbial physiology. The exciting technical developments of the 1990s and the 2000s eclipsed that tool; as a result, many investigators today lack experience with growth rate measurements. Recently, investigators in a number of areas have started to use measurements of bacterial growth rates for a variety of purposes.

View Article and Find Full Text PDF

In clinical settings it is often important to know not just the identity of a microorganism, but also the danger posed by that particular strain. For instance, Escherichia coli can range from being a harmless commensal to being a very dangerous enterohemorrhagic (EHEC) strain. Determining pathogenic phenotypes can be both time consuming and expensive.

View Article and Find Full Text PDF

Optical mapping is a technique that produces an ordered restriction map of a bacterial or eukaryotic chromosome. We have developed a new method, the BOP method, to compare experimental optical maps with in silico optical maps of complete genomes to infer the presence/absence of short DNA sequences (bops) in each genome. The BOP method, as implemented by the Optical Mapping suite of four programs, circumvents the necessity of whole-genome multiple alignments and permits reliable strain typing and clustering on the basis of optical maps.

View Article and Find Full Text PDF

The evolution of antibiotic resistance among bacteria threatens our continued ability to treat infectious diseases. The need for sustainable strategies to cure bacterial infections has never been greater. So far, all attempts to restore susceptibility after resistance has arisen have been unsuccessful, including restrictions on prescribing [1] and antibiotic cycling [2], [3].

View Article and Find Full Text PDF

Fitness landscapes are central in the theory of adaptation. Recent work compares global and local properties of fitness landscapes. It has been shown that multi-peaked fitness landscapes have a local property called reciprocal sign epistasis interactions.

View Article and Find Full Text PDF

Acinetobacter baumannii is a nosocomial bacterial pathogen, and infections attributed to this species are further complicated by a remarkable ability to acquire antimicrobial resistance genes and to survive in a desiccated state. While the antibiotic resistance and biofilm formation of A. baumannii is well-documented, less is known about the virulence attributes of this organism.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) exhibits a high level of genetic variability, and variants with reduced susceptibility to antivirals can occur even before treatment begins. In addition, alcohol decreases efficacy of antiviral therapy and increases sequence heterogeneity of HCV RNA but how ethanol affects HCV sequence is unknown. Ethanol metabolism and HCV infection increase the level of reactive species that can alter cell metabolism, modify signaling, and potentially act as mutagen to the viral RNA.

View Article and Find Full Text PDF

The microbiota in the human gastrointestinal tract (GIT) is highly exposed to antibiotics, and may be an important reservoir of resistant strains and transferable resistance genes. Maternal GIT strains can be transmitted to the offspring, and resistances could be acquired from birth. This is a case study using a metagenomic approach to determine the diversity of microorganisms conferring tetracycline resistance (Tc(r)) in the guts of a healthy mother-infant pair one month after childbirth, and to investigate the potential for horizontal transfer and maternal transmission of Tc(r) genes.

View Article and Find Full Text PDF

TEM-1 β-lactamase is one of the most well-known antibiotic resistance determinants around. It confers resistance to penicillins and early cephalosporins and has shown an astonishing functional plasticity in response to the introduction of novel drugs derived from these antibiotics. Since its discovery in the 1960s, over 170 variants of TEM-1 - with different amino acid sequences and often resistance phenotypes - have been isolated in hospitals and clinics worldwide.

View Article and Find Full Text PDF

Horizontal gene transfer (HGT) has been responsible for the dissemination of numerous antimicrobial-resistance determinants throughout diverse bacterial species. The rapid and broad dissemination of resistance determinants by HGT, and subsequent selection for resistance imposed by the use of antimicrobials, threatens to undermine the usefulness of antimicrobials. However, vigilant surveillance of the emerging antimicrobial resistance in clinical settings and subsequent studies of resistant isolates create a powerful system for studying HGT and detecting rare events.

View Article and Find Full Text PDF

Objectives: The objective of this research was to determine whether recombination occurs in class A beta-lactamases.

Methods: We performed chi(2) analysis of the observed and expected numbers of times that beta-lactamases from the TEM, SHV and CTX-M groups co-occurred. Additionally, we performed phylogenetic analysis to detect independent occurrences of silent mutations in bla(TEM) and bla(SHV) variants.

View Article and Find Full Text PDF

We passaged cells expressing TEM-1 and TEM-12 from a single plasmid through either ampicillin or ceftazidime. We found that the combined effects of recombination and selection removed the bla(TEM-1) allele from the bacterial population when it was passaged through ceftazidime or the bla(TEM-12) allele when cultures were passaged through ampicillin.

View Article and Find Full Text PDF

qnr is an important and recently emerged plasmidic fluoroquinolone resistance gene. Numerous qnr alleles have been detected, but previous studies have suggested that there is little functional divergence among them. We performed phylogenetic analysis of representative qnr alleles and examined the phylogeny for the occurrence of positive selection (d(N)/d(S)).

View Article and Find Full Text PDF

bla(TEM-1) expression results in penicillin resistance, whereas expression of many bla(TEM-1) descendants, called extended-spectrum beta-lactamases (ESBLs), results simultaneously in resistance to penicillins and extended-spectrum cephalosporins. Despite the expanded resistance phenotypes conferred by many ESBLs, bla(TEM-1) is still the most abundant bla(TEM) allele in many microbial populations. This study examines the fitness effects of the two amino acid substitutions, R164S and E240K, that have occurred repeatedly among ESBL bla(TEM-1) descendants.

View Article and Find Full Text PDF

We constructed a phylogenetic analysis of class A beta-lactamases and found that the blaCTX-Ms have been mobilized to plasmids approximately 10 times more frequently than other class A beta-lactamases. We also found that the blaCTX-Ms are descended from a common ancestor that was incorporated in ancient times into the chromosome of the ancestor of Kluyvera species through horizontal transfer. Considerable sequence divergence has occurred among the descendents of that ancestral gene sequence since that gene was inserted.

View Article and Find Full Text PDF