There is much excitement about the opportunity to harness the power of large language models (LLMs) when building problem-solving assistants. However, the standard methodology of evaluating LLMs relies on static pairs of inputs and outputs; this is insufficient for making an informed decision about which LLMs are best to use in an interactive setting, and how that varies by setting. Static assessment therefore limits how we understand language model capabilities.
View Article and Find Full Text PDFWeak hydrogen bonds are increasingly hypothesized to play key roles in a wide range of chemistry from catalysis to gelation to polymer structure. Here, N/C spin-echo magic-angle spinning (MAS) solid-state nuclear magnetic resonance (NMR) experiments are applied to "view" intermolecular CH···N hydrogen bonding in two selectively labeled organic compounds, 4-[N] cyano-4'-[C] ethynylbiphenyl () and [N,C]-2,4,6-triethynyl-1,3,5-triazine (). The synthesis of , is reported here for the first time via a multistep procedure, where the key element is the reaction of [N]-2,4,6-trichloro-1,3,5-triazine () with [C]-[(trimethylsilyl)ethynyl]zinc chloride () to afford its immediate precursor [N,C]-2,4,6-tris[(trimethylsilyl)ethynyl]-1,3,5-triazine ().
View Article and Find Full Text PDFStructure determination of functional organic compounds remains a formidable challenge when the sample exists as a powder. Nuclear magnetic resonance crystallography approaches based on the comparison of experimental and Density Functional Theory (DFT)-computed H chemical shifts have already demonstrated great potential for structure determination of organic powders, but limitations still persist. In this study, we discuss the possibility of using C- C dipolar couplings quantified on powdered theophylline at natural isotopic abundance with the help of dynamic nuclear polarization, to realize a DFT-free, rapid screening of a pool of structures predicted by ab initio random structure search.
View Article and Find Full Text PDFThis paper presents an NMR crystallography study of three polymorphs of furosemide. Experimental magic-angle spinning (MAS) solid-state NMR spectra are reported for form I of furosemide, and these are assigned using density-functional theory (DFT)-based gauge-including projector augmented wave (GIPAW) calculations. Focusing on the three known polymorphs, we examine the changes to the NMR parameters due to crystal packing effects.
View Article and Find Full Text PDFIn this article, we introduce and apply a methodology, based on density functional theory and the gauge-including projector augmented wave approach, to explore the effects of packing interactions on solid-state nuclear magnetic resonance (NMR) parameters. A visual map derived from a so-termed "magnetic shielding contribution field" can be made of the contributions to the magnetic shielding of a specific site-partitioning the chemical shift to specific interactions. The relation to the established approaches of examining the molecule to crystal change in the chemical shift and the nuclear independent chemical shift is established.
View Article and Find Full Text PDFThis paper explores the capability of using the DFT-D ab initio random structure searching (AIRSS) method to generate crystal structures of organic molecular materials, focusing on a system (m-aminobenzoic acid; m-ABA) that is known from experimental studies to exhibit abundant polymorphism. Within the structural constraints selected for the AIRSS calculations (specifically, centrosymmetric structures with Z = 4 for zwitterionic m-ABA molecules), the method is shown to successfully generate the two known polymorphs of m-ABA (form III and form IV) that have these structural features. We highlight various issues that are encountered in comparing crystal structures generated by AIRSS to experimental powder X-ray diffraction (XRD) data and solid-state magic-angle spinning (MAS) NMR data, demonstrating successful fitting for some of the lowest energy structures from the AIRSS calculations against experimental low-temperature powder XRD data for known polymorphs of m-ABA, and showing that comparison of computed and experimental solid-state NMR parameters allows different hydrogen-bonding motifs to be discriminated.
View Article and Find Full Text PDFSolid State Nucl Magn Reson
September 2016
We introduce two open source tools to aid the processing and visualisation of ab-initio computed solid-state NMR parameters. The Magres file format for computed NMR parameters (as implemented in CASTEP v8.0 and QuantumEspresso v5.
View Article and Find Full Text PDFUsing videography to extract quantitative data on animal movement and kinematics constitutes a major tool in biomechanics and behavioral ecology. Advanced recording technologies now enable acquisition of long video sequences encompassing sparse and unpredictable events. Although such events may be ecologically important, analysis of sparse data can be extremely time-consuming and potentially biased; data quality is often strongly dependent on the training level of the observer and subject to contamination by observer-dependent biases.
View Article and Find Full Text PDFLarval fishes suffer prodigious mortality rates, eliminating 99% of the cohort within a few days after their first feeding. Hjort (1914) famously attributed this "critical period" of low survival to larval inability to obtain sufficient food. We discuss recent experimental and modeling work, suggesting that the viscous hydrodynamic regime have marked effects on the mechanism of suction feeding in larval fish.
View Article and Find Full Text PDF