Metalloproteinases (MMPs) are proteolytic enzymes that function in the extracellular matrix to degrade connective tissues. While it is clear that exercise-induced injury in skeletal muscle promotes increased expression of MMPs, the relationship between exercise intensity and expression of MMPs in muscles is unknown. These experiments tested the hypothesis that exercise-induced expression of matrix metalloproteinases (MMP-2 and MMP-9) is dose-dependent such that high-intensity endurance exercise increases MMP expression whereas low-intensity endurance exercise will not promote MMP expression in skeletal muscles.
View Article and Find Full Text PDFMatrix metalloproteinases (MMPs) are a family of zinc- dependent proteolytic enzymes that function mainly in the extracellular matrix, where they contribute to the development, functioning, and pathology of a wide range of tissues. This mini-review describes the MMPs and tissue inhibitors of MMPs (TIMPs) in skeletal muscle, and considers their involvement in muscle development, ischemia, myonecrosis, angiogenesis, denervation, exercise-induced injuries, disuse atrophy, muscle repair and regeneration, and inflammatory myopathies and dystrophies. Despite the very limited information currently available on MMPs and their inhibitors in skeletal muscle, it is becoming increasingly clear that they have important physiological functions in maintenance of the integrity and homeostasis of muscle fibers and of the extracellular matrix.
View Article and Find Full Text PDF