Additive engineering of lead halide perovskites has been a successful strategy for reducing a variety of deleterious defect types. Ionic liquids (ILs) are a unique group of such additives that have been used to passivate halide vacancies in both bulk lead halide perovskites and their colloidal nanocrystal analogues. Herein, we expand the types of defects that can be addressed through IL treatments in CsPbBr nanocrystals with a novel phosphonium tribromide IL that heals metallic lead surface defects through redox chemistry.
View Article and Find Full Text PDFPhotoisomerization of azobenzenes from their stable isomer to the metastable state is the basis of numerous applications of these molecules. However, this reaction typically requires ultraviolet light, which limits applicability. In this study, we introduce disequilibration by sensitization under confinement (DESC), a supramolecular approach to induce the -to- isomerization by using light of a desired color, including red.
View Article and Find Full Text PDFThe power conversion efficiencies of lead halide perovskite thin film solar cells have surged in the short time since their inception. Compounds, such as ionic liquids (ILs), have been explored as chemical additives and interface modifiers in perovskite solar cells, contributing to the rapid increase in cell efficiencies. However, due to the small surface area-to-volume ratio of the large grained polycrystalline halide perovskite films, an atomistic understanding of the interaction between ILs and perovskite surfaces is limited.
View Article and Find Full Text PDFWe show that metal-organic frameworks, based on tetrahedral pyridyl ligands, can be used as a morphological and structural template to form a series of isostructural crystals having different metal ions and properties. An iterative crystal-to-crystal conversion has been demonstrated by consecutive cation exchanges. The primary manganese-based crystals are characterized by an uncommon space group (P622).
View Article and Find Full Text PDFUnderstanding exciton-exciton interaction in multiply excited nanocrystals is crucial to their utilization as functional materials. Yet, for lead halide perovskite nanocrystals, which are promising candidates for nanocrystal-based technologies, numerous contradicting values have been reported for the strength and sign of their exciton-exciton interaction. In this work, we unambiguously determine the biexciton binding energy in single cesium lead halide perovskite nanocrystals at room temperature.
View Article and Find Full Text PDFConspectusThe rediscovery of the halide perovskite class of compounds and, in particular, the organic and inorganic lead halide perovskite (LHP) materials and lead-free derivatives has reached remarkable landmarks in numerous applications. First among these is the field of photovoltaics, which is at the core of today's environmental sustainability efforts. Indeed, these efforts have born fruit, reaching to date a remarkable power conversion efficiency of 25.
View Article and Find Full Text PDFMetal-organic chemical vapor deposition (MOCVD) is one of the main methodologies used for thin-film fabrication in the semiconductor industry today and is considered one of the most promising routes to achieve large-scale and high-quality 2D transition metal dichalcogenides (TMDCs). However, if special measures are not taken, MOCVD suffers from some serious drawbacks, such as small domain size and carbon contamination, resulting in poor optical and crystal quality, which may inhibit its implementation for the large-scale fabrication of atomic-thin semiconductors. Here we present a growth-etch MOCVD (GE-MOCVD) methodology, in which a small amount of water vapor is introduced during the growth, while the precursors are delivered in pulses.
View Article and Find Full Text PDFFormation of a p-n junction-like with a large built-in field is demonstrated at the nanoscale, using two types of semiconducting nanoparticles, CsPbBr nanocrystals and CdSe nanoplatelets, capped with molecular linkers. By exploiting chemical recognition of the capping molecules, the two types of nanoparticles are brought into mutual contact, thus initiating spontaneous charge transfer and the formation of a strong junction field. Depending on the choice of capping molecules, the magnitude of the latter field is shown to vary in a broad range, corresponding to an interface potential step as large as ∼1 eV.
View Article and Find Full Text PDFColloidal PbS quantum dots (QDs) have been successfully employed as additives in halide perovskite solar cells (PSCs) acting as nucleation centers in the perovskite crystallization process. For this strategy, the surface functionalization of the QDs, controlled the use of different capping ligands, is likely of key importance. In this work, we examine the influence of the PbS QD capping on the photovoltaic performance of methylammonium lead iodide PSCs.
View Article and Find Full Text PDFPhys Chem Chem Phys
June 2016
Cadmium chalcogenide nanoplatelet (NPL) synthesis has recently witnessed a significant advance in the production of more elaborate structures such as core/shell and core/crown NPLs. However, controlled doping in these structures has proved difficult because of the restrictive synthetic conditions required for 2D anisotropic growth. Here, we explore the incorporation of tellurium (Te) within CdSe NPLs with Te concentrations ranging from doping to alloying.
View Article and Find Full Text PDFPairs of coupled quantum dots with controlled coupling between the two potential wells serve as an extremely rich system, exhibiting a plethora of optical phenomena that do not exist in each of the isolated constituent dots. Over the past decade, coupled quantum systems have been under extensive study in the context of epitaxially grown quantum dots (QDs), but only a handful of examples have been reported with colloidal QDs. This is mostly due to the difficulties in controllably growing nanoparticles that encapsulate within them two dots separated by an energetic barrier via colloidal synthesis methods.
View Article and Find Full Text PDFSignificant overpotentials between the sensitizer and both the electron and hole conductors hamper the performance of sensitized solar cells, leading to a reduced photovoltage. We show that by using properly designed type-II quantum dots (QDs) between the sensitizer and the hole conductor in thin absorber cells, it is possible to increase the open circuit voltage (Voc) by more than 100 mV. This increase is due to the formation of a photoinduced dipole (PID) layer.
View Article and Find Full Text PDFA blue solid-state laser material based on 4,4' dibenzyl carbamido stilbene-2,2' disulfonic acid incorporated into solgel zirconia and inorganic-organic hybrid matrices is presented. The absorption maxima of the dye in various matrices are around 339-361 nm, and the broad fluorescence peaks are at 411-413 nm. Optical gain measurements using the variable stripe method show amplified spontaneous emission peaking at 437 nm.
View Article and Find Full Text PDFThe exceptional fluorescence properties of single CdSe quantum rods (QRs) arising from internal and external electric fields are studied. Reversible external field induced switching of the emission in single QRs is reported for the first time. This effect was correlated with local field induced emission intensity reduction and newly observed darkening mechanism.
View Article and Find Full Text PDFConjugated polymers and indium arsenide-based nanocrystals were used to create near-infrared plastic light-emitting diodes. Emission was tunable from 1 to 1.3 micrometers--a range that effectively covers the short-wavelength telecommunications band--by means of the quantum confinement effects in the nanocrystals.
View Article and Find Full Text PDF