Restoration of the communication between brain circuitry is a crucial step in the recovery of brain damage induced by traumatic injuries or neurological insults. In this work we present a study of real-time unidirectional communication between a spiking neuronal network (SNN) implemented on digital platform and an in-vitro biological neuronal network (BNN), generating similar spontaneous patterns of activity both spatial and temporal. The communication between the networks was established using patterned optogenetic stimulation via a modified digital light projector (DLP) receiving real-time input dictated by the spiking neurons' state.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2018
Evidence suggests that astrocytes play key roles in structural and functional organization of neuronal circuits. To understand how astrocytes influence the physiopathology of cerebellar circuits, we cultured cells from cerebella of mice that lack the gene. Mutations in are causative of the human cerebellar degenerative disease ataxia-telangiectasia.
View Article and Find Full Text PDFThe brain operates through the coordinated activation and the dynamic communication of neuronal assemblies. A major open question is how a vast repertoire of dynamical motifs, which underlie most diverse brain functions, can emerge out of a fixed topological and modular organization of brain circuits. Compared to in vivo studies of neuronal circuits which present intrinsic experimental difficulties, in vitro preparations offer a much larger possibility to manipulate and probe the structural, dynamical and chemical properties of experimental neuronal systems.
View Article and Find Full Text PDFUnlabelled: The effect of Alzheimer's disease pathology on activity of individual neocortical neurons in the intact neural network remains obscure. Ongoing spontaneous activity, which constitutes most of neocortical activity, is the background template on which further evoked-activity is superimposed. We compared in vivo intracellular recordings and local field potentials (LFP) of ongoing activity in the barrel cortex of APP/PS1 transgenic mice and age-matched littermate CONTROLS, following significant amyloid-β (Aβ) accumulation and aggregation.
View Article and Find Full Text PDFBrain-machine interfaces (BMI) were born to control "actions from thoughts" in order to recover motor capability of patients with impaired functional connectivity between the central and peripheral nervous system. The final goal of our studies is the development of a new proof-of-concept BMI-a neuromorphic chip for brain repair-to reproduce the functional organization of a damaged part of the central nervous system. To reach this ambitious goal, we implemented a multidisciplinary "bottom-up" approach in which in vitro networks are the paradigm for the development of an in silico model to be incorporated into a neuromorphic device.
View Article and Find Full Text PDFThe growing recognition that brain pathologies do not affect neurons only but rather are, to a large extent, pathologies of glial cells as well as of the vasculature opens to new perspectives in our understanding of genetic disorders of the CNS. To validate the role of the neuron-glial-vascular unit in the etiology of genome instability disorders, we report about cell death and morphological aspects of neuroglia networks and the associated vasculature in a mouse model of Ataxia Telangiectasia (A-T), a human genetic disorder that induces severe motor impairment. We found that A-T-mutated protein deficiency was consistent with aberrant astrocytic morphology and alterations of the vasculature, often accompanied by reactive gliosis.
View Article and Find Full Text PDFDendritic spines are assumed to constitute the locus of neuronal plasticity, and considerable effort has been focused on attempts to demonstrate that new memories are associated with the formation of new spines. However, few studies that have documented the appearance of spines after exposure to plasticity-producing paradigms could demonstrate that a new spine is touched by a bona fida presynaptic terminal. Thus, the functional significance of plastic dendritic spine changes is not clearly understood.
View Article and Find Full Text PDFGABAergic interneurons of the hippocampus play an important role in the generation of behaviorally relevant network oscillations. Among this heterogeneous neuronal population, somatostatin (SOM)-positive oriens-lacunosum moleculare (O-LM) interneurons are remarkable because they are tuned to operate at theta frequencies (6-10 Hz) in vitro and in vivo. Recent studies show that a high proportion of glutamatergic synapses that impinge on O-LM interneurons are mediated by kainate receptors (KA-Rs).
View Article and Find Full Text PDFThe roles of protein kinase C and the MAP-kinase extracellular receptor kinase in structural changes associated with long-term potentiation of network activity were examined in cultured hippocampal neurons. A brief exposure to a conditioning medium that favours activation of the N-methyl-d-aspartate receptor caused a rapid and specific increase in staining of neurons for the phosphorylated form of extracellular receptor kinase as well as of cyclic AMP response element binding protein. Exposure of the cultures to the conditioning medium was followed by a protein synthesis-dependent formation of novel dendritic spines.
View Article and Find Full Text PDF