Publications by authors named "Mireya P Velasquez"

Immunotherapy with T-cells expressing bispecific T-cell engagers (ENG T-cells) is a promising approach to improve the outcomes for patients with recurrent/refractory acute myeloid leukemia (AML). However, similar to T-cells expressing chimeric antigen receptors (CARs), their antitumor activity is limited in the setting of chronic antigen stimulation. We therefore set out to explore whether transgenic expression of IL15 improves the effector function of ENG T-cells targeting CD123-positive AML.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T-cell therapy combines antigen-specific properties of monoclonal antibodies with the lytic capacity of T cells. An effective and safe CAR-T cell therapy strategy relies on identifying an antigen that has high expression and is tumor specific. This strategy has been successfully used to treat patients with B-cell acute lymphoblastic leukemia (B-ALL).

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T cell therapy is revolutionizing cancer immunotherapy for patients with B cell malignancies and is now being developed for solid tumors and chronic viral infections. Although clinical trials have demonstrated the curative potential of CAR T cell therapy, a substantial and well-established limitation is the heightened contraction and transient persistence of CAR T cells during prolonged antigen exposure. The underlying mechanism(s) for this dysfunctional state, often termed CAR T cell exhaustion, remains poorly defined.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T cells targeting CD123, an acute myeloid leukemia (AML) antigen, hold the promise of improving outcomes for patients with refractory/recurrent disease. We generated five lentiviral vectors encoding CD20, which may serve as a target for CAR T cell depletion, and 2 or 3 generation CD123-CARs since the benefit of two costimulatory domains is model dependent. Four CARs were based on the CD123-specific single-chain variable fragment (scFv) 26292 (292) and one CAR on the CD123-specific scFv 26716 (716), respectively.

View Article and Find Full Text PDF

Outcomes for pediatric patients with acute myeloid leukemia (AML) remain poor, highlighting the need for improved targeted therapies. Building on the success of CD19-directed immune therapy for acute lymphocytic leukemia (ALL), efforts are ongoing to develop similar strategies for AML. Identifying target antigens for AML is challenging because of the high expression overlap in hematopoietic cells and normal tissues.

View Article and Find Full Text PDF

There is a need to improve outcomes for patients with recurrent and/or refractory hematological malignancies. Immunotherapy holds the promise to meet this need, because it does not rely on the cytotoxic mechanism of conventional therapies. Among different forms of immunotherapy, redirecting T cells to hematological malignancies with bispecific antibodies (BsAbs) is an attractive strategy.

View Article and Find Full Text PDF

Introduction: Achieving better disease control in patients diagnosed with acute myeloid leukemia (AML) has proven challenging. Overall survival has been impacted by addressing treatment related mortality with focused supportive care measures. Despite this improvement, it remains difficult to induce durable leukemia remissions despite aggressive chemotherapeutic regimens.

View Article and Find Full Text PDF

The outcome for advanced stage hepatocellular carcinoma (HCC) remains poor, highlighting the need for novel therapies. Genetically modified mesenchymal stem cells (MSCs) are actively being explored as cancer therapeutics due to their inherent ability to migrate to tumor sites. We reasoned that MSCs can be genetically modified to redirect T cells to Glypican-3 (GPC3) HCC, and genetically modified these with viral vectors encoding a GPC3/CD3 bispecific T cell engager (GPC3-ENG), a bispecifc T cell engager specific for an irrelevant antigen (EGFRvIII), and/or costimulatory molecules (CD80 and 41BBL).

View Article and Find Full Text PDF

T cells expressing CD19-specific chimeric antigen receptors (CARs) with endodomains that encode a signaling domain derived from CD3ζ and CD28 or 41BB have potent antitumor activity in early-phase clinical studies for B-cell malignancies. Besides CD19-specific CARs, other approaches are actively being pursued to redirect T cells to CD19, including recombinant bispecific T-cell engager (BiTE) proteins or T cells genetically modified to express BiTEs [engager (ENG) T cells]. As BiTEs provide no costimulation, we investigated here if provision of costimulation through CD28 and 41BB enhances the effector function of CD19-ENG T cells.

View Article and Find Full Text PDF

There are conflicting reports on whether or not laboratory abnormalities in pediatric acquired von Willebrand syndrome (AVWS) predict bleeding manifestations in patients with cardiopulmonary disorders (CPD). We retrospectively reviewed charts of patients with AVWS and CPD (n=16) seen at Texas Children's Hospital from 2003 to 2012. The most common CPD were valve stenoses, ventricular septal defects, and pulmonary hypertension.

View Article and Find Full Text PDF

In this issue of , Braig et al have identified a novel mechanism of CD19-targeted immune escape.

View Article and Find Full Text PDF

Immunotherapy with CD123-specific T-cell engager proteins or with T cells expressing CD123-specific chimeric antigen receptors is actively being pursued for acute myeloid leukemia. T cells secreting bispecific engager molecules (ENG-T cells) may present a promising alternative to these approaches. To evaluate therapeutic potential, we generated T cells to secrete CD123/CD3-bispecific engager molecules.

View Article and Find Full Text PDF

T cells expressing chimeric antigen receptors (CARs) or the infusion of bispecific T-cell engagers (BITEs) have shown antitumor activity in humans for CD19-positive malignancies. While BITEs redirect the large reservoir of resident T cells to tumors, CAR T cells rely on significant in vivo expansion to exert antitumor activity. We have shown that it is feasible to modify T cells to secrete solid tumor antigen-specific BITEs, enabling T cells to redirect resident T cells to tumor cells.

View Article and Find Full Text PDF

Adoptive immunotherapy with antigen-specific T cells has shown promise for the treatment of malignancies. However, infused T cells are unable to redirect resident T cells, limiting potential benefit. While the infusion of bispecific T-cell engagers can redirect resident T cells to tumors, these molecules have a short half-life, and do not self amplify.

View Article and Find Full Text PDF

Background: Acute chest syndrome (ACS) is a leading cause of hospitalization and death of children with sickle cell disease (SCD). An evidence-based ACS/SCD guideline was established to standardize care throughout the institution in February 2008. However, by the summer of 2009 use of the guideline was inconsistent, and did not seem to have an impact on length of stay.

View Article and Find Full Text PDF