Publications by authors named "Mireya Marin-Husstege"

The tumor suppressor protein p53 (Trp53) and the cell cycle inhibitor p27(Kip1) (Cdknb1) have both been implicated in regulating proliferation of adult subventricular zone (aSVZ) cells. We previously reported that genetic ablation of Trp53 (Trp53-/-) or Cdknb1 (p27(Kip1-/-) ) increased proliferation of cells in the aSVZ, but differentially affected the number of adult born neuroblasts. We therefore hypothesized that these molecules might play non-redundant roles.

View Article and Find Full Text PDF

This study identifies novel mechanisms of Hes5 function in developmental myelination. We report here upregulation of myelin gene expression in Hes5-/- mice compared to wild-type siblings and downregulation in overexpressing progenitors. This effect was only partially explained by the ability to regulate the levels of Mash1 and bind to N boxes in myelin promoters, as deletion of the DNA-binding domain of Hes5 did not suppress its inhibitory role on myelin gene expression.

View Article and Find Full Text PDF

Myelination in the central nervous system is a complex process requiring the integration of oligodendrocyte progenitor differentiation and the coordinate expression of myelin genes. This study addresses the role of the helix-loop-helix protein Id4 in these two events. Overexpression of Id4 in oligodendrocyte progenitors prevents differentiation and consequently decreases the endogenous expression of all myelin genes.

View Article and Find Full Text PDF

The role of multipotential progenitors and neural stem cells in the adult subventricular zone (SVZ) as cell-of-origin of glioblastoma has been suggested by studies on human tumors and transgenic mice. However, it is still unknown whether glial tumors are generated by all of the heterogeneous SVZ cell types or only by specific subpopulations of cells. It has been proposed that transformation could result from lack of apoptosis and increased self-renewal, but the definition of the properties leading to neoplastic transformation of SVZ cells are still elusive.

View Article and Find Full Text PDF

The mechanisms regulating the number of myelinating cells in the central nervous system are crucial for both normal development and repair in pathological conditions. Among relevant growth factors involved in this process, fibroblast growth factor-2 (FGF2) induces oligodendrocyte progenitors (OLPs) to proliferate and stimulates mature oligodendrocytes (OLs) to reenter the S-phase of the cell cycle. S-phase entry is modulated by the formation of complexes between cyclins and cyclin-dependent kinases (CDKs), on one hand, and by their interactions with cell cycle inhibitors (e.

View Article and Find Full Text PDF

Using primary cultures of oligodendrocyte progenitors isolated from male and female neonatal rodent brains, we observed more oligodendrocytes in female-derived compared to male-derived cultures. To determine whether the observed differences were due to a differential effect of sex hormones on proliferation, we treated cultures with increasing doses of 17beta-estradiol, testosterone or progesterone and labeled cells with bromodeoxyuridine to identify cells in S phase. Treatment with 17beta-estradiol, but not progesterone or testosterone, delayed the exit of oligodendrocyte progenitor cells from the cell cycle.

View Article and Find Full Text PDF

Process outgrowth is crucial in oligodendrocyte (OL) development and myelination. It is well accepted that increased levels of proteins affecting the polymerization of cytoskeletal components promote branching. Interestingly, we have suggested that other mechanisms may contribute to oligodendrocyte process outgrowth.

View Article and Find Full Text PDF

Gene expression can be modulated by chromatin changes induced by histone acetylation and deacetylation. Acetylation of histone lysine residues by acetyltransferases is associated with transcriptionally active chromatin, whereas the removal of acetyl groups by histone deacetylases (HDACs) correlates with repressed chromatin. Recent evidence has shown that histone deacetylation is responsible for restricting neuronal gene expression, whereas histone acetylation is necessary for astrocytic differentiation We now asked whether histone acetylation or deacetylation was necessary for oligodendrocyte differentiation.

View Article and Find Full Text PDF

The process of oligodendrocyte differentiation is a complex event that requires cell cycle withdrawal, followed by the activation of a specific transcriptional program responsible for the synthesis of myelin genes. Because growth arrest precedes differentiation, we sought to investigate the role of cell cycle molecules in the activation of myelin gene promoters. We hypothesized that the cell cycle inhibitor p27(Kip1), which is primarily responsible for arresting proliferating oligodendrocyte progenitors, may be involved in the transcriptional regulation of myelin genes.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiong10mk2n535mgsv5trhunmfpb3n9o0e7p): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once