Publications by authors named "Mirey G"

Article Synopsis
  • * This study focused on the interaction between two significant mycotoxins: aflatoxin B1 (AFB1), a strong carcinogen, and deoxynivalenol (DON), which is commonly found in food.
  • * Findings reveal that DON reduces the harmful effects of AFB1 by inhibiting the activity of enzymes that activate AFB1, suggesting the need to study these toxins together rather than in isolation.
View Article and Find Full Text PDF

So far, the majority of in vitro toxicological experiments are conducted after an acute 24 h treatment that does not represent a realistic human chemical exposure. Recently, new in vitro approaches have been proposed to study the chemical toxicological effect over several days in order to be more predictive of a representative exposure scenario. In this study, we investigated the genotoxic potential of chemicals (direct or bioactived clastogen, aneugen and apoptotic inducer) with the γH2AX and pH3 biomarkers, in the human liver-derived HepaRP cell line.

View Article and Find Full Text PDF

Aflatoxin B1 (AFB1) is the most potent natural carcinogen among mycotoxins. Versicolorin A (VerA) is a precursor of AFB1 biosynthesis and is structurally related to the latter. Although VerA has already been identified as a genotoxin, data on the toxicity of VerA are still scarce, especially at low concentrations.

View Article and Find Full Text PDF

The dairy industry generates a large volume of by-products containing bioactive compounds that may have added value. The aim of this study was to evaluate the antioxidant and antigenotoxic effects of milk-derived products, such as whey, buttermilk, and lactoferrin, in two human cell lines: Caco-2 as an intestinal barrier model and HepG2 as a hepatic cell line. First, the protective effect of dairy samples against the oxidative stress caused by menadione was analyzed.

View Article and Find Full Text PDF

The whitening and opacifying agent titanium dioxide (TiO) is used worldwide in various foodstuffs, toothpastes and pharmaceutical tablets. Its use as a food additive (E171 in EU) has raised concerns for human health. Although the buccal mucosa is the first area exposed, oral transmucosal passage of TiO particles has not been documented.

View Article and Find Full Text PDF
Article Synopsis
  • The Cytolethal Distending Toxin (CDT) is a bacterial genotoxin linked to significant foodborne diseases, activating DNA Damage Response and influencing immune responses.
  • Chronic exposure to CDT in cells leads to a strong type I interferon (IFN) response through the cytoplasmic sensor cGAS, emphasizing the role of DNA damage recognition.
  • The study indicates that CDT exposure causes extensive DNA damage and genetic instability during cell division, with varying effects on immune response based on tissue and cell type, which is crucial for understanding its role in chronic inflammation and cancer development.
View Article and Find Full Text PDF

The cytolethal distending toxin (CDT) is produced by several Gram-negative pathogenic bacteria. In addition to inflammation, experimental evidences are in favor of a protumoral role of CDT-harboring bacteria such as , , or . CDT may contribute to cell transformation and carcinogenesis in mice models, through the genotoxic action of CdtB catalytic subunit.

View Article and Find Full Text PDF

Colloidal silver products are sold for a wide range of disinfectant and health applications. This has increased the potential for human exposure to silver nanoparticles (AgNPs) and ions (Ag), for which oral ingestion is considered to be a major route of exposure. Our objective was to evaluate and compare the toxicity of two commercially available colloidal silver products on two human intestinal epithelial models under realistic exposure conditions.

View Article and Find Full Text PDF

The Cytolethal Distending Toxin (CDT) is produced by many Gram-negative pathogenic bacteria responsible for major foodborne diseases worldwide. CDT induces DNA damage and cell cycle arrest in host-cells, eventually leading to senescence or apoptosis. According to structural and sequence comparison, the catalytic subunit CdtB is suggested to possess both nuclease and phosphatase activities, carried by a single catalytic site.

View Article and Find Full Text PDF

The Cytolethal Distending Toxin (CDT) is a bacterial virulence factor produced by several Gram-negative pathogenic bacteria. These bacteria, found in distinct niches, cause diverse infectious diseases and produce CDTs differing in sequence and structure. CDTs have been involved in the pathogenicity of the associated bacteria by promoting persistent infection.

View Article and Find Full Text PDF

The Cytolethal Distending Toxin (CDT) is produced by many pathogenic bacteria. CDT is known to induce genomic DNA damage to host eukaryotic cells through its catalytic subunit, CdtB. CdtB is structurally homologous to DNase I and has a nuclease activity, dependent on several key residues.

View Article and Find Full Text PDF

The classification of the fungicide captan (CAS Number: 133-06-2) as a carcinogen agent is presently under discussion. Despite the mutagenic effect detected by the Ames test and carcinogenic properties observed in mice, the genotoxicity of this pesticide in humans is still unclear. New information is needed about its mechanism of action in mammalian cells.

View Article and Find Full Text PDF

Objective: produces a genotoxin, cytolethal distending toxin (CDT), which has DNAse activity and causes DNA double-strand breaks. Although infection has been shown to promote intestinal inflammation, the impact of this bacterium on carcinogenesis has never been examined.

Design: Germ-free (GF) mice, fed with 1% dextran sulfate sodium, were used to test tumorigenesis potential of CDT-producing .

View Article and Find Full Text PDF

Through diet, people are exposed simultaneously to a variety of contaminants (e.g. heavy metals, mycotoxins, pesticides) that could have combined adverse effects on human health.

View Article and Find Full Text PDF

Colibactins are hybrid polyketide-nonribosomal peptides produced by , , and other harboring the genomic island. These genotoxic metabolites are produced by -encoded peptide-polyketide synthases as inactive prodrugs called precolibactins, which are then converted to colibactins by deacylation for DNA-damaging effects. Colibactins are bona fide virulence factors and are suspected of promoting colorectal carcinogenesis when produced by intestinal Natural active colibactins have not been isolated, and how they induce DNA damage in the eukaryotic host cell is poorly characterized.

View Article and Find Full Text PDF

Within the nucleus, sub-nuclear domains define territories where specific functions occur. Nuclear bodies (NBs) are dynamic structures that concentrate nuclear factors and that can be observed microscopically. Recently, NBs containing the p53 binding protein 1 (53BP1), a key component of the DNA damage response, were defined.

View Article and Find Full Text PDF

The Cytolethal Distending Toxin (CDT), produced by many bacteria, has been associated with various diseases including cancer. CDT induces DNA double-strand breaks (DSBs), leading to cell death or mutagenesis if misrepaired. At low doses of CDT, other DNA lesions precede replication-dependent DSB formation, implying that non-DSB repair mechanisms may contribute to CDT cell resistance.

View Article and Find Full Text PDF

Chromatin function is involved in many cellular processes, its visualization or modification being essential in many developmental or cellular studies. Here, we present the characterization of chromatibody, a chromatin-binding single-domain, and explore its use in living cells. This non-intercalating tool specifically binds the heterodimer of H2A-H2B histones and displays a versatile reactivity, specifically labeling chromatin from yeast to mammals.

View Article and Find Full Text PDF

The composition of the human microbiota influences tumorigenesis, notably in colorectal cancer (CRC). Pathogenic Escherichia coli possesses a variety of virulent factors, among them the Cytolethal Distending Toxin (CDT). CDT displays dual DNase and phosphatase activities and induces DNA double strand breaks, cell cycle arrest and apoptosis in a broad range of mammalian cells.

View Article and Find Full Text PDF

Purpose: The effect of one pesticide spraying season on DNA damage was measured on B and T lymphocytes among open-field farmers and controls.

Methods: At least two peripheral blood samples were collected from each individual: one in a period without any pesticide application, several weeks after the last use (January, at period P0), and another in the intensive pesticide spraying period (May or June, at period P4). DNA damage was studied by alkaline comet assay on isolated B or T lymphocytes.

View Article and Find Full Text PDF

Marek's disease is one of the most common viral diseases of poultry affecting chicken flocks worldwide. The disease is caused by an alphaherpesvirus, the Marek's disease virus (MDV), and is characterized by the rapid onset of multifocal aggressive T-cell lymphoma in the chicken host. Although several viral oncogenes have been identified, the detailed mechanisms underlying MDV-induced lymphomagenesis are still poorly understood.

View Article and Find Full Text PDF

RECQL4, a member of the RecQ helicase family, is a multifunctional participant in DNA metabolism. RECQL4 protein participates in several functions both in the nucleus and in the cytoplasm of the cell, and mutations in human RECQL4 are associated with three genetic disorders: Rothmund-Thomson, RAPADILINO and Baller-Gerold syndromes. We previously reported that RECQL4 is recruited to laser-induced DNA double-strand breaks (DSB).

View Article and Find Full Text PDF

The cytolethal distending toxin (CDT) is produced by many pathogenic Gram-negative bacteria and is considered as a virulence factor. In human cells, CDT exposure leads to a unique cytotoxicity associated with a characteristic cell distension and induces a cell cycle arrest dependent on the DNA damage response (DDR) triggered by DNA double-strand breaks (DSBs). CDT has thus been classified as a cyclomodulin and a genotoxin.

View Article and Find Full Text PDF

The occurrence of DNA double-strand breaks (DSBs) induced by ionizing radiation has been extensively studied by biochemical or cell imaging techniques. Cell imaging development relies on technical advances as well as our knowledge of the cell DNA damage response (DDR) process. The DDR involves a complex network of proteins that initiate and coordinate DNA damage signaling and repair activities.

View Article and Find Full Text PDF

The Cytolethal Distending Toxin (CDT) is a genotoxin produced by several pathogenic bacteria. It is generally admitted that CDT induces double-strand breaks (DSB) and cell cycle arrest in G2/M-phase, in an ATM-dependent manner. Most of these results were obtained at high dose (over 1 μg ml(-1) ) of CDT and late after treatment (8-24 h).

View Article and Find Full Text PDF