Unlabelled: Biomass burning is a common agricultural practice, because it allows elimination of postharvesting residues; nevertheless, it involves an inefficient combustion process that generates atmospheric pollutants emission, which has implications on health and climate change. This work focuses on the estimation of emission factors (EFs) of PM, PM, organic carbon (OC), elemental carbon (EC), carbon monoxide (CO), carbon dioxide (CO), and methane (CH) of residues from burning alfalfa, barley, beans, cotton, maize, rice, sorghum, and wheat in Mexico. Chemical characteristics of the residues were determined to establish their relationship with EFs, as well as with the modified combustion efficiency (MCE).
View Article and Find Full Text PDFThis research presents the interaction of the epoxy polymer diglicydil ether of bisphenol-A (DGEBA) with silica (SiO₂) nanoparticles plus zirconia (ZrO₂) nanoparticles obtained via the sol-gel method in the synthesis of an epoxy-silica-zirconia hybrid adhesive cured with polyamide. ZrO₂ nanoparticles were added to the epoxy-silica hybrid adhesive produced in situ to modify the apparent shear strength of two adhesively bonded aluminum specimens. The results showed that the addition of different amounts of ZrO₂ nanoparticles increased the shear strength of the adhesively bonded aluminum joint, previously treated by sandblasting, immersion in hot water and silanized with a solution of hydrolyzed 3-glycidoxipropyltrimethoxysilane (GPTMS).
View Article and Find Full Text PDFWe report the synthesis of cerium oxide, cobalt oxide, mixed cerium, and cobalt oxides and a Ce-Co/Al₂O₃ membrane, which are employed as catalysts for the catalytic wet oxidation (CWO) reaction process and the removal of formaldehyde from industrial effluents. Formaldehyde is present in numerous waste streams from the chemical industry in a concentration low enough to make its recovery not economically justified but high enough to create an environmental hazard. Common biological degradation methods do not work for formaldehyde, a highly toxic but refractory, low biodegradability substance.
View Article and Find Full Text PDFBenzene alkylation with propylene was studied in the gas phase using a catalytic membrane reactor and a fixed-bed reactor in the temperature range of 200-300 °C and with a weight hourly space velocity (WHSV) of 51 h. β-zeolite was prepared by hydrothermal synthesis using silica, aluminum metal and TEAOH as precursors. The membrane's XRD patterns showed good crystallinity for the β-zeolite film, while scanning electron microscopy SEM results indicated that its random polycrystalline film was approximately 1 μm thick.
View Article and Find Full Text PDF