Publications by authors named "Mirella Giovarelli"

Prostate Cancer (PCa) is one of the most common malignancies in men worldwide, with 1.4 million diagnoses and 310,000 deaths in 2020. Currently, there is an intense debate regarding the serum prostatic specific antigen (PSA) test as a diagnostic tool in PCa due to the lack of specificity and high prevalence of over-diagnosis and over-treatments.

View Article and Find Full Text PDF

Immunotherapy is a valuable approach to cancer treatment as it is able to activate the immune system. However, the curative methods currently in clinical practice, including immune checkpoint inhibitors, present some limitations. Dendritic cell vaccination has been investigated as an immunotherapeutic strategy, and nanotechnology-based delivery systems have emerged as powerful tools for improving immunotherapy and vaccine development.

View Article and Find Full Text PDF

Serum prostatic specific antigen (PSA) has proven to have limited accuracy in early diagnosis and in making clinical decisions about different therapies for prostate cancer (PCa). This is partially due to the fact that an increase in PSA in the blood is due to the compromised architecture of the prostate, which is only observed in advanced cancer. On the contrary, PSA observed in the urine (uPSA) reflects the quantity produced by the prostate, and therefore can give more information about the presence of disease.

View Article and Find Full Text PDF

Introduction: Many types of research have been performed to improve the diagnosis, therapy, and prognosis of oropharyngeal carcinomas (OP-SCCs). Since they arise in lymphoid-rich areas and intense lymphocytic infiltration has been related to a better prognosis, a TREM-1 putative function in tumour progression and survival has been hypothesized.

Materials And Methods: Twenty-seven human papillomavirus (HPV) 16 OP-SCC specimens have been analyzed to relate TREM-1 expression with histiocytic and lymphocytic markers, HPV presence and patients' outcome.

View Article and Find Full Text PDF

Δ16HER2 is a splice variant of HER2 and defined as the transforming isoform in HER2-positive breast cancer. It has been shown that Δ16HER2 promotes breast cancer aggressiveness and drug resistance. In the present work, we used modeling to identify structural differences between Δ16HER2 and the wild-type HER2 proteins.

View Article and Find Full Text PDF

Macrophages (Mf) are a heterogeneous population of tissue-resident professional phagocytes and a major component of the leukocyte infiltrate at sites of inflammation, infection, and tumor growth. They can undergo diverse forms of activation in response to environmental factors, polarizing into specialized functional subsets. A common hallmark of the pathologic environment is represented by hypoxia.

View Article and Find Full Text PDF

Anaplastic carcinoma of the thyroid (ATC) is a lethal human malignant cancer with median survival of 6 months. To date, no treatment has substantially changed its course, which makes urgent need for the development of novel drugs or novel formulations for drug delivery. Nanomedicine has enormous potential to improve the accuracy of cancer therapy by enhancing availability and stability, decreasing effective doses and reducing side effects of drugs.

View Article and Find Full Text PDF

Pancreatic Ductal Adenocarcinoma (PDA) is a very aggressive tumor for which effective therapeutical strategies are still lacking. Globally, the 5 y survival rate is 5-7% and surgery is the only potentially curative treatment. Immunotherapy represents a novel possibility for treating PDA, and myeloid-derived suppressor cells (MDSC), which are increased in cancer patients and correlate with metastatic burden and cancer stage, offer a new target in cancer therapy.

View Article and Find Full Text PDF

Camptothecin (CPT), a pentacyclic alkaloid, is an inhibitor of DNA Topoisomerase-I and shows a wide spectrum of anti-cancer activities. The use of CPT has been hampered by poor aqueous solubility and a high degradation rate. Previously, it has been reported that CPT encapsulated in β-cyclodextrin-nanosponges (CN-CPT) overcomes these disadvantages and improves the CPT's inhibitory effect on DU145 prostate tumor cell lines, and PC-3 growth in vitro.

View Article and Find Full Text PDF

Unlabelled: Langerhans cells (LCs) are a specialized dendritic cell subset that resides in the epidermis and mucosal epithelia and is critical for the orchestration of skin immunity. Recent evidence suggest that LCs are involved in aberrant wound healing and in the development of hypertrophic scars and chronic wounds, which are characterized by a hypoxic environment. Understanding LCs biology under hypoxia may, thus, lead to the identification of novel pathogenetic mechanisms of wound repair disorders and open new therapeutic opportunities to improve wound healing.

View Article and Find Full Text PDF

Aims/hypothesis: Mesenchymal stem cells (MSCs) can exert an immunosuppressive effect on any component of the immune system, including dendritic cells (DCs), by direct contact, the release of soluble markers and extracellular vesicles (EVs). We evaluated whether MSCs and MSC-derived EVs have an immunomodulatory effect on monocyte-derived DCs in type 1 diabetes.

Methods: Bone marrow derived MSCs were characterised and EVs were obtained by ultracentrifugation.

View Article and Find Full Text PDF

Objectives: The loss of major histocompatibility complex (MHC) classes I and II is a well-known mechanism by which cancer cells are able to escape from immune recognition. In this study, we analyzed the expression of antigen processing and presenting molecules in 2 cell lines derived from mouse models of pancreatic ductal adenocarcinoma (PDA) and the effects of the re-expression of MHC class II on PDA rejection.

Methods: The PDA cell lines were analyzed for the expression of MHC class I, II, and antigen-processing molecules by flow cytometry or polymerase chain reaction.

View Article and Find Full Text PDF

Aims/hypothesis: Mesenchymal stem cells (MSCs) have been shown to abrogate in vitro the proinflammatory response in type 1 diabetes. The mechanism involves paracrine factors, which may include microvesicles (MVs). We evaluated whether MVs derived from heterologous bone-marrow MSCs exert an immunomodulatory effect on T cell responses against GAD (glutamic acid decarboxylase) antigen in type 1 diabetes.

View Article and Find Full Text PDF

Vascular endothelial cells (ECs) and several cancer cells express B7h, which is the ligand of the ICOS T cell costimulatory molecule. We have previously shown that B7h triggering via a soluble form of ICOS (ICOS-Fc) inhibits the adhesion of polymorphonuclear and tumor cell lines to HUVECs; thus, we suggested that ICOS-Fc may act as an anti-inflammatory and antitumor agent. Because cancer cell migration and angiogenesis are crucial for metastasis dissemination, the aim of this work was to evaluate the effect of ICOS-Fc on the migration of cancer cells and ECs.

View Article and Find Full Text PDF

Purpose: Despite the great success of HER2 vaccine strategies in animal models, effective clinical results have not yet been obtained. We studied the feasibility of using DNA coding for chimeric rat/human HER2 as a tool to break the unresponsiveness of T cells from patients with HER2-overexpressing tumors (HER2-CP).

Experimental Design: Dendritic cells (DCs) generated from patients with HER2-overexpressing breast (n = 28) and pancreatic (n = 16) cancer were transfected with DNA plasmids that express human HER2 or heterologous rat sequences in separate plasmids or as chimeric constructs encoding rat/human HER2 fusion proteins and used to activate autologous T cells.

View Article and Find Full Text PDF

Background: Pancreatic Ductal Adenocarcinoma (PDAC) is a highly aggressive malignancy with only a 5% 5-year survival rate. Reliable biomarkers for early detection are still lacking. The goals of this study were (a) to identify early humoral responses in genetically engineered mice (GEM) spontaneously developing PDAC; and (b) to test their diagnostic/predictive value in newly diagnosed PDAC patients and in prediagnostic sera.

View Article and Find Full Text PDF

Unlabelled: The objective of the present study was to evaluate whether placental mesenchymal stromal cells (PDMSCs) derived from normal and preeclamptic (PE) chorionic villous tissue presented differences in their cytokines expression profiles. Moreover, we investigated the effects of conditioned media from normal and PE-PDMSCs on the expression of pro-inflammatory Macrophage migration Inhibitory Factor (MIF), Vascular Endothelial Growth Factor (VEGF), soluble FMS-like tyrosine kinase-1 (sFlt-1) and free β-human Chorionic Gonadotropin (βhCG) by normal term villous explants. This information will help to understand whether anomalies in PE-PDMSCs could cause or contribute to the anomalies typical of preeclampsia.

View Article and Find Full Text PDF

DCs are powerful antigen-presenting cells central in the orchestration of innate and acquired immunity. DC development, migration, and activities are intrinsically linked to the microenvironment. DCs migrate through pathologic tissues before reaching their final destination in the lymph nodes.

View Article and Find Full Text PDF

Background & Aims: Pancreatic ductal adenocarcinoma (PDA) is an aggressive tumor, and patients typically present with late-stage disease; rates of 5-year survival after pancreaticoduodenectomy are low. Antibodies against α-enolase (ENO1), a glycolytic enzyme, are detected in more than 60% of patients with PDA, and ENO1-specific T cells inhibit the growth of human pancreatic xenograft tumors in mice. We investigated whether an ENO1 DNA vaccine elicits antitumor immune responses and prolongs survival of mice that spontaneously develop autochthonous, lethal pancreatic carcinomas.

View Article and Find Full Text PDF

B7h, expressed by several cell types, binds ICOS expressed by activated T cells. We have previously shown that B7h triggering by ICOS-Fc inhibits human endothelial cell adhesiveness. This work investigated the effect of ICOS-Fc on human monocyte-derived dendritic cells (DCs).

View Article and Find Full Text PDF

Myeloid dendritic cells (DCs) are professional antigen-presenting cells critical for the orchestration of immunity and maintenance of self-tolerance. DC development and functions are tightly regulated by a complex network of inhibitory and activating signals present in the tissue microenvironment, and dysregulated DC responses may result in amplification of inflammation, loss of tolerance, or establishment of immune escape mechanisms. Generation of mature (m)DCs from monocytic precursors recruited at pathological sites occurs under condition of low partial oxygen pressure (pO(2)).

View Article and Find Full Text PDF

Dendritic cells (DCs) are a heterogeneous group of professional antigen-presenting cells functioning as sentinels of the immune system and playing a key role in the initiation and amplification of innate and adaptive immune responses. DC development and functions are acquired during a complex differentiation and maturation process influenced by several factors present in the local milieu. A common feature at pathologic sites is represented by hypoxia, a condition of low pO(2), which creates a unique microenvironment affecting cell phenotype and behavior.

View Article and Find Full Text PDF

In T lymphocytes, the internalization of the R2 chain of the IFN-γ receptor (IFN-γR2) prevents the switching-on of pro-apoptotic and anti-proliferative genes induced by the IFN-γ/STAT1 pathway. In fibroblasts, a critical role of controlling the IFN-γR2 internalization is played by the LI(255-256) intracellular motif. Here we show that, in human malignant T cells, the expression of a mutated IFN-γR2 chain in which the LI(255-256) internalization motif is replaced by two alanines (LI(255-256)AA) induces cell surface accumulation of the receptor and reinstates the cell sensitivity to IFN-γ.

View Article and Find Full Text PDF

Several lines of evidence link Interferons (IFNs) with autoimmune disorders. Autoantibodies against the Interferon-inducible IFI16 protein, a member of the HIN-200 family constitutively expressed in endothelial cells and keratinocytes, have been identified in patients affected by autoimmune diseases including Systemic Lupus Erythematosus (SLE), Sjogren Syndrome (SjS), and Scleroderma (SSc). These findings point to a role for IFI16 in the etiopathogenesis of autoimmune diseases, but the exact mechanisms involved in the development of autoimmunity remain obscure.

View Article and Find Full Text PDF

The IFN-inducible human IFI16 gene is highly expressed in endothelial cells as well as epithelial and hematopoietic tissues. Previous gene array analysis of human umbilical vein endothelial cells overexpressing IFI16 has revealed an increased expression of genes involved in inflammation and apoptosis. In this study, protein array analysis of the IFI16 secretome showed an increased production of chemokines, cytokines and adhesion molecules responsible for leukocyte chemotaxis.

View Article and Find Full Text PDF