This study addresses the challenges of biodiesel production costs and waste oil disposal by investigating the use of low-cost waste oil as a feedstock. The impact of heating temperature on biodiesel yield and trace metal levels is examined using response surface methodology (RSM). Optimal conditions for high biodiesel yields (95-98%) from canola oil are determined with a methanol/oil ratio of 12:1, 1 wt% catalyst, and 60-min reaction time.
View Article and Find Full Text PDFBiowaste utilization as a carbon source and its transformation into porous carbons have been of great interest to promote environmental remediation owing to biowaste's cost-effectiveness and useful physicochemical properties. In this work, crude glycerol (CG) residue from waste cooking oil transesterification was employed to fabricate mesoporous crude glycerol-based porous carbons (CGPCs) using mesoporous silica (KIT-6) as a template. The obtained CGPCs were characterized and compared to commercial activated carbon (AC) and CMK-8, a carbon material prepared using sucrose.
View Article and Find Full Text PDFThe Claus process is used in natural gas processing plants to treat HS-rich acid gas to recover sulfur, but the process suffers from catalytic deactivation when aromatic contaminants such as benzene, toluene, ethylbenzene, and xylene isomers (collectively called as BTEX) are present in the acid gas feed. To safeguard the catalytic reactors, it is desired to oxidize aromatic contaminants in the furnace that are present upstream of the catalytic reactors in the process by oxidants present in it. This work develops a reaction mechanism and evaluates the reaction kinetics for the oxidation of phenyl radical by SO using CBS-QBS for reaction energetics and RRKM and transition state theory for reaction kinetics.
View Article and Find Full Text PDFCarbon dioxide (CO) is the top contributor to global warming. On the other, soot particles formed during fuel combustion and released into the atmosphere are harmful and also contribute to global warming. It would therefore be highly advantageous to capture soot and make use of it as a feedstock to synthesize carbon-based materials for applications such as carbon dioxide adsorption.
View Article and Find Full Text PDFDinuclear Co-based catalysts are used for the coupling reaction of epoxides and CO2 in the presence of a cocatalyst. The easily recyclable catalysts efficiently complete the coupling of CO2 with various epoxides into industrially important cyclic carbonates at low catalyst loading and displayed high catalytic activity under relatively low CO2 pressure and solvent-free conditions. The maximum TON (168 600) and TOF (3333 h-1) obtained in this work are the highest among the reported Co-complexes.
View Article and Find Full Text PDF