We explored the optoelectronic and vibrational properties of a new class of halogen-terminated carbon atomic wires in the form of polyynes using UV-vis, infrared absorption, Raman spectroscopy, X-ray single-crystal diffraction, and DFT calculations. These polyynes terminate on one side with a cyanophenyl group and on the other side, with a halogen atom X (X = Cl, Br, I). We focus on the effect of different halogen terminations and increasing lengths (i.
View Article and Find Full Text PDFA theoretical approach based on Periodic Boundary Conditions (PBC) and a Linear Combination of Atomic Orbitals (LCAO) in the framework of the density functional theory (DFT) is used to investigate the molecular mechanism that rules the piezoelectric behavior of poly(vinylidene fluoride) (PVDF) polymer in the crystalline β-phase. We present several computational tests highlighting the peculiar electrostatic potential energy landscape the polymer chains feel when they change their orientation by a rigid rotation in the lattice cell. We demonstrate that a rotation of the permanent dipole through chain rotation has a rather low energy cost and leads to a lattice relaxation.
View Article and Find Full Text PDFLinear and helical graphene nanoribbons ( and ) bearing electron-rich pyrrole units have been synthesized by using the photochemical cyclodehydrochlorination (CDHC) reaction. The pyrrole units in the polymer backbone make the polymer electron-rich with moderate bandgap values and relatively high HOMO energy levels. The planarization of the pyrrole unit through cyclization yields a bandgap value almost 0.
View Article and Find Full Text PDFPhys Chem Chem Phys
November 2011
Quantum chemical calculations (DFT, TDDFT and ZINDO/S) of singlet and triplet exciton couplings are presented and discussed for some acene derivatives (such as anthracene, tetracene, 9,10-di(phenyl)anthracene and 9,10-bis(phenylethynyl)anthracene). An accurate excited state single molecule characterization has been carried out followed by an analysis of the inter-molecular excitonic interactions, taking place in the crystalline phase. These have been correlated to exciton coupling terms obtaining guidelines for the choice of molecular materials with large exciton couplings.
View Article and Find Full Text PDFThe infrared (IR) spectrum of an adamantyl endcapped α, ω-polyyne (the hexayne, Ad-C(12)-Ad) is investigated both experimentally and computationally. A new IR band is observed upon UV photoexcitation of the compound (embedded in a poly methyl methacrylate matrix at 78 K), thus, revealing the existence of new photogenerated molecular structure trapped at low temperature. Complete reversibility is found, thus, demonstrating that the photoexcitation is responsible for the generation of metastable excited states of the molecule.
View Article and Find Full Text PDFAdamantyl-end-capped polyynes with chains of 4, 6, 8, 10, 12, 16, and 20 sp-hybridized carbons (C4-C20) have been synthesized and their IR and Raman spectra obtained. On the basis of violations of the mutual-exclusion principle between IR and Raman spectroscopy, spectral evidence demonstrates that these molecules possess a noncentrosymmetric molecular structure in both the solid and solution states. This premise is supported by X-ray crystallographic analysis of C12, which shows a bent, noncentrosymmetric structure in the solid state.
View Article and Find Full Text PDFIn this work, we analyze the effect of intermolecular dipole-dipole interactions on Raman spectra of polyconjugated molecules. In particular, the behavior of push-pull polyenes has been studied. By means of density functional theory (DFT) calculations on isolated molecules and dimers, we have found that both the frequencies and intensities of the strongest Raman lines (R mode) are strongly influenced by intermolecular interactions.
View Article and Find Full Text PDFIn this work, the vibrational force fields of hydrogen-capped oligoynes of increasing chain lengths are investigated by means of density functional theory calculations. It is shown that the interaction force constants between CC stretching coordinates decrease slowly with the distance between the two bonds considered. The consequence for the frequency dispersion of longitudinal optical (LO) phonons of an infinite polyyne chain is discussed and related to the observed behavior of the spectra of finite-size molecules.
View Article and Find Full Text PDFWe present a critical analysis of the Raman spectra of unsubstituted oligothiophenes and rediscuss the well-known Raman dispersion of conjugated systems explicitly considering intermolecular interactions. Temperature-dependent Raman spectra and DFT calculations for dimers of different chain lengths show that the effect of intermolecular interactions on the frequency and intensity of carbon-carbon (CC) stretching modes is non-negligible. This effect has not been considered in previous works and might explain many spectral features of this class of compounds which are not completely interpreted by the usual models.
View Article and Find Full Text PDF