Publications by authors named "Mirelis Santos-Cancel"

In this manuscript, we describe the development and application of electrochemical aptamer-based (E-AB) sensors directly interfaced with astrocytes in three-dimensional (3D) cell culture to monitor stimulated release of adenosine triphosphate (ATP). The aptamer-based sensor couples specific detection of ATP, selective performance directly in cell culture media, and seconds time resolution using squarewave voltammetry for quantitative ATP-release measurements. More specifically, we demonstrate the ability to quantitatively monitor ATP release into the extracellular environment after stimulation by the addition of calcium (Ca), ionomycin, and glutamate.

View Article and Find Full Text PDF

In this manuscript, we employ the technique intermittent pulse amperometry (IPA) to interrogate equilibrium and kinetic target binding to the surface of electrochemical, aptamer-based (E-AB) sensors, achieving as fast as 2 ms time resolution. E-AB sensors comprise an electrode surface modified with a flexible nucleic acid aptamer tethered at the 3'-terminus with a redox-active molecule. The introduction of a target changes the conformation and flexibility of the nucleic acid, which alters the charge transfer rate of the appended redox molecule.

View Article and Find Full Text PDF

Electrochemical aptamer-based (E-AB) sensors offer advantageous analytical detection abilities due to their rapid response time (seconds to minutes), specificity to a target, and selectivity to function in complex media. Ribonucleic acid (RNA) aptamers employed in this class of sensor offer favorable binding characteristics resulting from the ability of RNA to form stable tertiary folds aided by long-range intermolecular interactions. As a result, RNA aptamers can fold into three-dimensional structures more complex than those of their DNA counterparts and consequently exhibit better binding ability to target analytes.

View Article and Find Full Text PDF