Developing compact ion accelerators using intense lasers is a very active area of research, motivated by a strong applicative potential in science, industry and healthcare. However, proposed applications in medical therapy, as well as in nuclear and particle physics demand a strict control of ion energy, as well as of the angular and spectral distribution of ion beam, beyond the intrinsic limitations of the several acceleration mechanisms explored so far. Here we report on the production of highly collimated ([Formula: see text] half angle divergence), high-charge (10s of pC) and quasi-monoenergetic proton beams up to [Formula: see text] 50 MeV, using a recently developed method based on helical coil targetry.
View Article and Find Full Text PDFWe report on a detailed experimental and numerical study on the boosted acceleration of protons from ultra-thin hemispherical targets utilizing multi-Joule short-pulse laser-systems. For a laser intensity of 1 × 10 W/cm and an on-target energy of only 1.3 J with this setup a proton cut-off energy of 8.
View Article and Find Full Text PDFAll-optical approaches to particle acceleration are currently attracting a significant research effort internationally. Although characterized by exceptional transverse and longitudinal emittance, laser-driven ion beams currently have limitations in terms of peak ion energy, bandwidth of the energy spectrum and beam divergence. Here we introduce the concept of a versatile, miniature linear accelerating module, which, by employing laser-excited electromagnetic pulses directed along a helical path surrounding the laser-accelerated ion beams, addresses these shortcomings simultaneously.
View Article and Find Full Text PDF