Presently, signal generation in MRI depends on the concentration and relaxivity of protons or other MR-active nuclei, and contrast depends on local differences in signal. In this proof-of-principle study, we explore the use of nonchemical, solid-state devices for generating detectable signal and/or contrast in vitro and in vivo. We introduce the concept of microresonant devices (MRDs), which are micron-sized resonators fabricated using microelectromechanical systems (MEMS) technology.
View Article and Find Full Text PDFA two-axis scanning catheter was developed for 3D endoscopic imaging with spectral domain optical coherence tomography (SD-OCT). The catheter incorporates a micro-mirror scanner implemented with microelectromechanical systems (MEMS) technology: the micro-mirror is mounted on a two-axis gimbal comprised of folded flexure hinges and is actuated by magnetic field. The scanner can run either statically in both axes or at the resonant frequency (>= 350Hz) for the fast axis.
View Article and Find Full Text PDF