Publications by authors named "Mireille Lejeune"

Analysis of several million expressed gene signatures (tags) revealed an increasing number of different sequences, largely exceeding that of annotated genes in mammalian genomes. Serial analysis of gene expression (SAGE) can reveal new Poly(A) RNAs transcribed from previously unrecognized chromosomal regions. However, conventional SAGE tags are too short to identify unambiguously unique sites in large genomes.

View Article and Find Full Text PDF

Background And Objectives: We studied the gene expression profile of human purified reticulocytes to provide a transcriptional basis for the study of erythroid biology, differentiation and hematologic disorders.

Design And Methods: We screened highly purified blood reticulocytes from ten healthy adult volunteers. We chose a modified protocol of serial analysis of gene expression (SAGE), the serial analysis of downsized extracts (SADE).

View Article and Find Full Text PDF

As a growing number of complementary transcripts, susceptible to exert various regulatory functions, are being found in eukaryotes, high throughput analytical methods are needed to investigate their expression in multiple biological samples. Serial Analysis of Gene Expression (SAGE), based on the enumeration of directionally reliable short cDNA sequences (tags), is capable of revealing antisense transcripts. We initially detected them by observing tags that mapped on to the reverse complement of known mRNAs.

View Article and Find Full Text PDF

Background And Objectives: Enhancement of oxygen delivery to tissues is associated with improved sporting performance. One way of enhancing oxygen delivery is to take recombinant human erythropoietin (rHuEpo), which is an unethical and potentially dangerous practice. However, detection of the use of rHuEpo remains difficult in situations such as: i) several days after the end of treatment ii) when a treatment with low doses is conducted iii) if the rHuEpo effect is increased by other substances.

View Article and Find Full Text PDF

The human leukemia cell line U937 is a well-established model for studying monocytic cell differentiation. We used a modified protocol (SADE) of serial analysis of gene expression (SAGE) and developed a SADE linker-anchored PCR assay to investigate the pattern of expression of known genes and to identify new transcripts in proliferating cells and during cell growth arrest and differentiation. We implemented new informatic tools to compare expression profiles before and after exposure of cells to differentiation inducers.

View Article and Find Full Text PDF