RNA-binding proteins (RBPs) are crucial factors of post-transcriptional gene regulation and their modes of action are intensely investigated. At the center of attention are RNA motifs that guide where RBPs bind. However, sequence motifs are often poor predictors of RBP-RNA interactions in vivo.
View Article and Find Full Text PDFUnderstanding which proteins and RNAs directly interact is crucial for revealing cellular mechanisms of gene regulation. Efficient methods allowing to detect RNA-protein interactions and dissect the underlying molecular origin for RNA-binding protein (RBP) specificity are in high demand. The recently developed recombination-Y3H screening (rec-Y3H) enabled many-by-many detection of interactions between pools of proteins and RNA fragments for the first time.
View Article and Find Full Text PDFKnowing which proteins and RNAs directly interact is essential for understanding cellular mechanisms. Unfortunately, discovering such interactions is costly and often unreliable. To overcome these limitations, we developed rec-YnH, a new yeast two and three-hybrid-based screening pipeline capable of detecting interactions within protein libraries or between protein libraries and RNA fragment pools.
View Article and Find Full Text PDFBackground: Synthetic zinc finger (ZF) proteins can be targeted to desired DNA sequences and are useful tools for gene therapy. We recently developed a ZF transcription repressor (ZF-KOX1) able to bind to expanded DNA CAG-repeats in the huntingtin (HTT) gene, which are found in Huntington's disease (HD). This ZF acutely repressed mutant HTT expression in a mouse model of HD and delayed neurological symptoms (clasping) for up to 3 weeks.
View Article and Find Full Text PDFHuntington's disease (HD) is a dominantly inherited neurodegenerative disorder caused by expanded CAG repeats in the huntingtin (HTT) gene. Although several palliative treatments are available, there is currently no cure and patients generally die 10-15 y after diagnosis. Several promising approaches for HD therapy are currently in development, including RNAi and antisense analogs.
View Article and Find Full Text PDFThe tumor suppressor gene p53 is mutated or deleted in over 50% of human tumors. As functional p53 plays a pivotal role in protecting against cancer development, several strategies for restoring wild-type (wt) p53 function have been investigated. In this study, we applied an approach using gene repair with zinc finger nucleases (ZFNs).
View Article and Find Full Text PDFSequencing DNA from several organisms has revealed that duplication and drift of existing genes have primarily moulded the contents of a given genome. Though the effect of knocking out or overexpressing a particular gene has been studied in many organisms, no study has systematically explored the effect of adding new links in a biological network. To explore network evolvability, we constructed 598 recombinations of promoters (including regulatory regions) with different transcription or sigma-factor genes in Escherichia coli, added over a wild-type genetic background.
View Article and Find Full Text PDFTemporal lobe epilepsy is a common form of drug-resistant epilepsy that sometimes responds to dietary manipulation such as the 'ketogenic diet'. Here we have investigated the effects of the glycolytic inhibitor 2-deoxy-D-glucose (2DG) in the rat kindling model of temporal lobe epilepsy. We show that 2DG potently reduces the progression of kindling and blocks seizure-induced increases in the expression of brain-derived neurotrophic factor and its receptor, TrkB.
View Article and Find Full Text PDFAcquired mutations in the hematopoietic transcription factor GATA binding protein-1 (GATA1) are found in megakaryoblasts from nearly all individuals with Down syndrome with transient myeloproliferative disorder (TMD, also called transient leukemia) and the related acute megakaryoblastic leukemia (DS-AMKL, also called DS-AML M7). These mutations lead to production of a variant GATA1 protein (GATA1s) that is truncated at its N terminus. To understand the biological properties of GATA1s and its relation to DS-AMKL and TMD, we used gene targeting to generate Gata1 alleles that express GATA1s in mice.
View Article and Find Full Text PDFPhysical association between the transcription factor GATA-1 and the cofactor, Friend of GATA-1 (FOG-1), is essential for the differentiation of two blood cell types, erythroid cells and megakaryocytes. However, little is known regarding the mechanisms that modulate their interaction within cells. In the present study, we have identified TACC3 as a FOG-1-interacting protein.
View Article and Find Full Text PDF