Sensors based on solidly mounted resonators (SMRs) exhibit a good set of properties, such as high sensitivity, fast response, low resolution limit and low production cost, which makes them an appealing technology for sensing applications. However, they can suffer from cross-sensitivity issues, as their response can be altered by undesirable ambient factors, such as temperature and humidity variations. In this work we propose a method to discriminate humidity variations from the general frequency response using an SMR specifically manufactured to operate in a dual-mode (displaying two close resonances).
View Article and Find Full Text PDFThis work presents a study on the homogeneity and thermal stability of AlScN films sputtered from Al-Sc segmented targets. The films are sputtered on Si substrates to assess their structural properties and on SiO/Mo-based stacked acoustic mirrors to derive their piezoelectric activity from the frequency response of acoustic resonators. Post-deposition annealing at temperatures up to 700 °C in a vacuum are carried out to test the stability of the AlScN films and their suitability to operate at high temperatures.
View Article and Find Full Text PDFSolidly Mounted Resonators (SMRs) for high frequency RF filters and sensing applications often display spurious resonances that distort their frequency response. In this work, we try to identify the origin of spurious resonances accompanying the main series resonances in AlN-based SMRs with the help of modified Butterworth Van Dyke (BVD) and Mason's models. By manufacturing SMRs of different sizes and shapes and studying the influence of the position of the electrical probing spot, we have demonstrated both theoretically and experimentally that devices with larger areas are more likely to display these additional peaks.
View Article and Find Full Text PDFWe report on a self-referenced refractive index optical sensor based on Au nanoislands. The device consists of a random distribution of Au nanoislands formed by dewetting on a planar SiO/metal Fabry-Pérot cavity. Experimental and theoretical studies of the reflectance of this configuration reveal that its spectral response results from a combination of two resonances: a localized surface plasmon resonance (LSPR) associated to the Au nanoislands and the lowest-order anti-symmetric resonance of the Fabry-Pérot cavity.
View Article and Find Full Text PDFWe present the successful growth of few-layer graphene on top of AlN-based solidly mounted resonators (SMR) using a low-temperature chemical vapour deposition (CVD) process assisted by Ni catalysts, and its effective bio-functionalization with antibodies. The SMRs are manufactured on top of fully insulating AlN/SiO acoustic mirrors able to withstand the temperatures reached during the CVD growth of graphene (up to 650 °C). The active AlN films, purposely grown with the -axis tilted, effectively excite shear modes displaying excellent in-liquid performance, with electromechanical coupling and quality factors of around 3% and 150, respectively, which barely vary after graphene integration.
View Article and Find Full Text PDFThin film acoustic wave resonator based devices require compensation of temperature coefficient of frequency (TCF) in many applications. This work presents the design and fabrication of temperature compensated solidly mounted resonators (SMRs). The characteristics of each material of the layered structure have an effect on the device TCF but depending on the relative position with respect to the piezoelectric material in the stack.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
July 2016
Thin film acoustic resonators operating in the shear mode are being increasingly used for in-liquid sensing applications. A good design of such sensors requires accurate knowledge of the acoustic properties of the materials composing the whole device, which specifically includes their shear velocities. Here we present a method to assess the shear acoustic velocity of high and low acoustic impedance films commonly used in AlN-based solidly mounted resonators (SMRs), using test devices specifically designed to induce a half-wavelength resonance in the layer under study.
View Article and Find Full Text PDFWe describe the fabrication and frequency characterization of different structures intended for the lateral excitation of shear modes in AlN c-axis-oriented films. AlN films are deposited on moderately doped silicon substrates covered either with partially metallic or fully insulating Bragg mirrors, and on insulating glass plates covered with insulating acoustic reflectors. TiOx seed layers are used to promote the growth of highly c-axis oriented AlN films, which is confirmed by XRD and SAW measurements.
View Article and Find Full Text PDF