Publications by authors named "Mirco Dindo"

Dimethylarginine dimethylaminohydrolase-1 (DDAH-1) accounts for the catabolism of the endogenous inhibitors of nitric oxide (NO) synthases, namely, ADMA (,-dimethyl-l-arginine) and NMMA (-monomethyl-l-arginine). Inhibition of DDAH-1 may prove a therapeutic benefit in diseases associated with elevated nitric oxide (NO) levels by providing a tissue-specific increase of ADMA and NMMA. In this work, we have used molecular dynamics to generate a pool of DDAH-1 conformations in the apo and holo forms.

View Article and Find Full Text PDF

Enzymes of the central metabolism tend to assemble into transient supramolecular complexes. However, the functional significance of the interactions, particularly between enzymes catalyzing non-consecutive reactions, remains unclear. Here, by co-localizing two non-consecutive enzymes of the TCA cycle from Bacillus subtilis, malate dehydrogenase (MDH) and isocitrate dehydrogenase (ICD), in phase separated droplets we show that MDH-ICD interaction leads to enzyme agglomeration with a concomitant enhancement of ICD catalytic rate and an apparent sequestration of its reaction product, 2-oxoglutarate.

View Article and Find Full Text PDF

Humans interact with a multitude of microorganisms in various ecological relationships, ranging from commensalism to pathogenicity. The same applies to fungi, long recognized for their pathogenic roles in infection-such as in invasive fungal diseases caused, among others, by and spp.-and, more recently, for their beneficial activities as an integral part of the microbiota.

View Article and Find Full Text PDF

In nature, chemotactic interactions are ubiquitous and play a critical role in driving the collective behavior of living organisms. Reproducing these interactions in vitro is still a paramount challenge due to the complexity of mimicking and controlling cellular features, such as tangled metabolic networks, cytosolic macromolecular crowding, and cellular migration, on a microorganism size scale. Here, we generate enzymatically active cell-sized droplets able to move freely, and by following a chemical gradient, able to interact with the surrounding droplets in a collective manner.

View Article and Find Full Text PDF
Article Synopsis
  • - Cystic fibrosis (CF) is a genetic disorder that leads to severe lung issues due to defective CFTR function, inflammation, and infections, making it a major health concern even with new treatments.
  • - Researchers are exploring sphingosine-1-phosphate (S1P) lyase (SPL) to target inflammation and fungal infections in CF patients by modifying S1P metabolism, showing promising results in mouse models.
  • - They have also conducted drug discovery efforts, successfully identifying two potential inhibitors that could work against both host and pathogen SPL, opening possibilities for new antifungal treatments in CF patients.
View Article and Find Full Text PDF

Primary Hyperoxaluria Type 1 (PH1) is a rare autosomal disease caused by mutations in AGXT that lead to the deficiency of alanine:glyoxylate aminotransferase (AGT). AGT is a liver pyridoxal 5'-phosphate (PLP)-dependent enzyme that detoxifies glyoxylate inside peroxisomes. The lack of AGT activity results in a build-up of glyoxylate that is oxidized to oxalate, then culminating in hyperoxaluria often leading to kidney failure.

View Article and Find Full Text PDF

Primary hyperoxaluria type I (PH1) is a rare kidney disease due to the deficit of alanine:glyoxylate aminotransferase (AGT), a pyridoxal-5'-phosphate-dependent enzyme responsible for liver glyoxylate detoxification, which in turn prevents oxalate formation and precipitation as kidney stones. Many PH1-associated missense mutations cause AGT misfolding. Therefore, the use of pharmacological chaperones (PCs), small molecules that promote correct folding, represents a useful therapeutic option.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores how genetic variations in proteins can subtly change their structure while maintaining function, allowing for increased adaptability to environmental changes.
  • It focuses on human alanine:glyoxylate aminotransferase (AGT1), highlighting that different forms (AGT-Ma and AGT-Mi) exhibit variations in structural stability, which correlates with their fitness.
  • The findings suggest that structural instability in AGT1 can enhance its ability to interact with other proteins, showing how evolution balances protein stability and adaptability through genetic variations.
View Article and Find Full Text PDF

Living cells harvest energy from their environments to drive the chemical processes that enable life. We introduce a minimal system that operates at similar protein concentrations, metabolic densities, and length scales as living cells. This approach takes advantage of the tendency of phase-separated protein droplets to strongly partition enzymes, while presenting minimal barriers to transport of small molecules across their interface.

View Article and Find Full Text PDF

Aspergillus fumigatus is a saprophytic ubiquitous fungus whose spores can trigger reactions such as allergic bronchopulmonary aspergillosis or the fatal invasive pulmonary aspergillosis. To survive in the lungs, the fungus must adapt to a hypoxic and nutritionally restrictive environment, exploiting the limited availability of aromatic amino acids (AAAs) in the best possible way, as mammals do not synthesize them. A key enzyme for AAAs catabolism in A.

View Article and Find Full Text PDF

Peroxisomal matrix proteins are transported into peroxisomes in a fully-folded state, but whether multimeric proteins are imported as monomers or oligomers is still disputed. Here, we used alanine:glyoxylate aminotransferase (AGT), a homodimeric pyridoxal 5'-phosphate (PLP)-dependent enzyme, whose deficit causes primary hyperoxaluria type I (PH1), as a model protein and compared the intracellular behavior and peroxisomal import of native dimeric and artificial monomeric forms. Monomerization strongly reduces AGT intracellular stability and increases its aggregation/degradation propensity.

View Article and Find Full Text PDF

The chemical processes taking place in humans intersects the myriad of metabolic pathways occurring in commensal microorganisms that colonize the body to generate a complex biochemical network that regulates multiple aspects of human life. The role of tryptophan (Trp) metabolism at the intersection between the host and microbes is increasingly being recognized, and multiple pathways of Trp utilization in either direction have been identified with the production of a wide range of bioactive products. It comes that a dysregulation of Trp metabolism in either the host or the microbes may unbalance the production of metabolites with potential pathological consequences.

View Article and Find Full Text PDF

Primary Hyperoxaluria type I (PH1) is a rare disease caused by mutations in the AGXT gene encoding alanine:glyoxylate aminotransferase (AGT), a liver enzyme involved in the detoxification of glyoxylate, the failure of which results in accumulation of oxalate and kidney stones formation. The role of protein misfolding in the AGT deficit caused by most PH1-causing mutations is increasingly being recognized. In addition, the genetic background in which a mutation occurs is emerging as a critical risk factor for disease onset and/or severity.

View Article and Find Full Text PDF

Field-effect transistor (FET) biosensors based on low-dimensional materials are capable of highly sensitive and specific label-free detection of various analytes. In this work, a FET biosensor based on graphene decorated with gold nanoparticles (Au NPs) was fabricated for lactose detection in a liquid-gate measurement configuration. This graphene device is functionalized with a carbohydrate recognition domain (CRD) of the human galectin-3 (hGal-3) protein to detect the presence of lactose from the donor effect of lectin - glycan affinity binding on the graphene.

View Article and Find Full Text PDF

AADC deficiency is a rare genetic disease caused by mutations in the gene of aromatic amino acid decarboxylase, the pyridoxal 5'-phosphate dependent enzyme responsible for the synthesis of dopamine and serotonin. Here, following a biochemical approach together with an in silico bioinformatic analysis, we present a structural and functional characterization of 13 new variants of AADC. The amino acid substitutions are spread over the entire protein from the N-terminal (V60A), to its loop1 (H70Y and F77L), to the large domain (G96R) and its various motifs, i.

View Article and Find Full Text PDF

Peroxisomal alanine:glyoxylate aminotransferase (AGT) is responsible for glyoxylate detoxification in human liver and utilizes pyridoxal 5'-phosphate (PLP) as coenzyme. The deficit of AGT leads to Primary Hyperoxaluria Type I (PH1), a rare disease characterized by calcium oxalate stones deposition in the urinary tract as a consequence of glyoxylate accumulation. Most missense mutations cause AGT misfolding, as in the case of the G41R, which induces aggregation and proteolytic degradation.

View Article and Find Full Text PDF

Oxalate decarboxylase (OxDC) from Bacillus subtilis is a Mn-dependent hexameric enzyme that converts oxalate to carbon dioxide and formate. OxDC has greatly attracted the interest of the scientific community, mainly due to its biotechnological and medical applications in particular for the treatment of hyperoxaluria, a group of pathologic conditions caused by oxalate accumulation. The enzyme has an acidic optimum pH, but most of its applications involve processes occurring at neutral pH.

View Article and Find Full Text PDF

The rise in the frequency of nosocomial infections is becoming a major problem for public health, in particular in immunocompromised patients. is an opportunistic fungus normally present in the environment directly responsible for lethal invasive infections. Recent results suggest that the metabolic pathways related to amino acid metabolism can regulate the fungus-host interaction and that an important role is played by enzymes involved in the catabolism of L-tryptophan.

View Article and Find Full Text PDF

Primary hyperoxalurias (PHs) are rare inherited disorders of liver glyoxylate metabolism, characterized by the abnormal production of endogenous oxalate, a metabolic end-product that is eliminated by urine. The main symptoms are related to the precipitation of calcium oxalate crystals in the urinary tract with progressive renal damage and, in the most severe form named Primary Hyperoxaluria Type I (PH1), to systemic oxalosis. The therapies currently available for PH are either poorly effective, because they address the symptoms and not the causes of the disease, or highly invasive.

View Article and Find Full Text PDF

In the version of this article originally published, the number for the equal contributions footnote was missing for Miriam Kaltenbach and Jason R. Burke in the author list. The error has been corrected in the PDF and print versions of this article.

View Article and Find Full Text PDF

The emergence of catalysis in a noncatalytic protein scaffold is a rare, unexplored event. Chalcone isomerase (CHI), a key enzyme in plant flavonoid biosynthesis, is presumed to have evolved from a nonenzymatic ancestor related to the widely distributed fatty-acid binding proteins (FAPs) and a plant protein family with no isomerase activity (CHILs). Ancestral inference supported the evolution of CHI from a protein lacking isomerase activity.

View Article and Find Full Text PDF

Primary hyperoxaluria type I (PH1) is a rare disease caused by the deficit of liver alanine-glyoxylate aminotransferase (AGT). AGT prevents oxalate formation by converting peroxisomal glyoxylate to glycine. When the enzyme is deficient, progressive calcium oxalate stones deposit first in the urinary tract and then at the systemic level.

View Article and Find Full Text PDF

Protein misfolding is becoming one of the main mechanisms underlying inherited enzymatic deficits. This review is focused on primary hyperoxalurias, a group of disorders of glyoxylate detoxification associated with massive calcium oxalate deposition mainly in the kidneys. The most common and severe form, primary hyperoxaluria Type I, is due to the deficit of liver peroxisomal alanine/glyoxylate aminotransferase (AGT).

View Article and Find Full Text PDF