The antimicrobial activity and toxicity of three novel synthetic antibacterial agents containing (1-indol-3-yl)methylium fragment were studied in vitro and in vivo. All compounds in vitro revealed high activity (minimal inhibitory concentration (MIC) 0.13-1.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
August 2021
We report a novel family of natural lipoglycopeptides produced by Streptomyces sp. INA-Ac-5812. Two major components of the mixture, named gausemycins A and B, were isolated, and their structures were elucidated.
View Article and Find Full Text PDFPharmaceuticals (Basel)
April 2021
After decades, the glycopeptide vancomycin is still the preferred antibiotic against resistant strains of Gram-positive bacteria. Although its clinical use is strictly regulated, the gradual spread of vancomycin-resistant bacteria, such as glycopeptide-resistant and glycopeptide-intermediate and vancomycin-resistant spp., is a serious health problem.
View Article and Find Full Text PDFA series of new compounds-arylbis(indol-3-yl)methylium derivatives-were synthesized and their antimicrobial activity was evaluated. All the compounds turned out to be highly active, with MIC depending on their structure and the length of N-alkyl residues. The parent triarylmethane compounds possess weaker activity.
View Article and Find Full Text PDFAmphotericin B (AmB, ) is the drug of choice for treating the most serious systemic fungal or protozoan infections. Nevertheless, its application is limited by low solubility in aqueous media and serious side effects such as infusion-related reactions, hemolytic toxicity, and nephrotoxicity. Owing to these limitations, it is essential to search for the polyene derivatives with better chemotherapeutic properties.
View Article and Find Full Text PDFA series of 3,4-bis(arylthio)maleimides were synthesized and their antimicrobial activity was evaluated against Gram-positive and Gram-negative bacteria, including multidrug resistant (MDR) strains and some fungi. Most compounds turned out to be highly active, activity being dependent on substituents on phenyl rings.
View Article and Find Full Text PDFOne of the promising directions of the combined approach is the design of dual-acting antibiotics - heterodimeric structures on the basis of antimicrobial agents of different classes. In this study a novel series of azithromycin-glycopeptide conjugates were designed and synthesized. The structures of the obtained compounds were confirmed using NMR spectroscopy and mass spectrometry data including MS/MS analysis.
View Article and Find Full Text PDFNovel benzoxaborole derivatives of azithromycin in which benzoxaborole residue is attached to the 4″-hydroxy-group of azithromycin have been synthesized. Antibacterial activity of synthesized derivatives in comparison with azithromycin was tested on a panel of Gram-positive and Gram-negative bacterial strains. All the investigated compounds demonstrated broad spectrum of antibacterial activity being in general more active against Gram-positive strains.
View Article and Find Full Text PDFPurpose: Development of new semisynthetic glycopeptides with improved antibacterial efficacy and reduced pseudoallergic reactions.
Methods: Semisynthetic glycopeptides 3-6 were synthesized from vancomycin (1) or eremomycin (2) by the condensation with pyrrolidine or piperidine. The minimum inhibitory concentration (MIC) for the new derivatives was measured by the broth micro-dilution method on a panel of clinical isolates of Staphylococcus and Enterococcus.
Clarithromycin (active against Gram positive infections) and 1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborole derivatives (effective for Gram negative microbes) are the ligands of bacterial RNA. The antimicrobial activities of these benzoxaboroles linked with clarithromycin at 9 or 4″ position were compared. Two synthetic pathways for these conjugates were elaborated.
View Article and Find Full Text PDFA series of novel quaternary ammonium 4-deoxypyridoxine derivatives was synthesized. Two compounds demonstrated excellent activity against a panel of Gram-positive methicillin-resistant strains with MICs in the range of 0.5-2 g/mL, exceeding the activity of miramistin.
View Article and Find Full Text PDFA series of hybrid antibiotics on the basis of azithromycin and glycopeptides with the glycopeptide molecule attached via the aminoalkylcarbamoyl spacer to 11-position of the macrolide was synthesized. All the synthesized compounds demonstrated equal or superior to azithromycin and vancomycin antibacterial activity against 7 tested strains of grampositive bacteria. The new hybrid antibiotics were more active than azithromycin or vancomycin against S.
View Article and Find Full Text PDFThe fungal strain INA 01108 producing antibiotic substances with broad spectrum of antibacterial activity was isolated from the natural environment. By the morphological characteristics and DNA analysis it was shown to belong to Ascomycetes of Sordariomycetes. In submerged culture the strain produced at least four antibiotics.
View Article and Find Full Text PDFAmidation of the end carboxyl group of eremomycin and vancomycin by pinacolinic 4- or 3-amino methyl phenyl boron acids esters in the presence of the condensing reagent PyBOP resulted in formation of novel carboxamides of the antibiotics (IIIa-VIa). After elimination of the pinacolinic group under mild hydrolysis in weak acid aqueous medium there formed the respective derivatives with a residue of the nonprotected boric acid (III-VI). It was shown that the activity of the 4-substituted derivatives of the borole-containing eremomycin and vancomycin practically was the same as that of the initial antibiotics, while higher than that of the respective 3-substituted derivatives of the borole-containing derivatives against 8 strains of grampositive bacteria.
View Article and Find Full Text PDFA comprehensive comparative analysis of the structure-antifungal activity relationships for the series of biosynthetically engineered nystatin analogues and their novel semisynthetic derivatives, as well as amphotericin B (AMB) and its semisynthetic derivatives, was performed. The data obtained revealed the significant influence of the structure of the C-7 to C-10 polyol region on the antifungal activity of these polyene antibiotics. Comparison of positions of hydroxyl groups in the antibiotics and in vitro antifungal activity data showed that the most active are the compounds in which hydroxyl groups are in positions C-8 and C-9 or positions C-7 and C-10.
View Article and Find Full Text PDFThe increasing prevalence of antibiotic-resistant bacterial strains has necessitated the synthesis of novel antibacterial agents. It was previously shown that naturally occurring metalloporphyrin hemin possesses dark antibacterial activity against Gram-positive bacteria. To improve hemin antibacterial activity, we synthesized a number of hemin conjugates with amino acids and branched peptides.
View Article and Find Full Text PDFIt was found by virtual screening that 3-amino-1H-pyrazolo[3,4-b]quinolines could have wide protein kinase inhibitory activity. Amides of titled amines and thioureas were synthesized regioselectively. 3-Amino-7-methoxy-1H-pyrazolo[3,4-b]quinoline demonstrated in vitro significant inhibitory activity on bacterial serine/threonine protein kinases (inhibition of resistance to kanamycin in Streptomyces lividans regulated by protein kinases).
View Article and Find Full Text PDFJ Antibiot (Tokyo)
February 2010
Mono- and disubstituted novel derivatives of the heptaene nystatin analog 28,29-didehydronystatin A(1) (S44HP, 1) were obtained by chemical modification of the exocyclic C-16 carboxyl and/or an amino group of mycosamine moiety. The strategy of preparation of mono- and double-modified polyene macrolides was based on the use of intermediate hydrophobic N-Fmoc (9-fluorenylmethoxycarbonyl) derivatives that facilitated the procedures of isolation and purification of new compounds. The antifungal activity of the new derivatives was first tested in vitro against yeasts and filamentous fungi, allowing the selection of the most active compounds that were subsequently tested for acute toxicity in mice.
View Article and Find Full Text PDFJ Med Chem
January 2009
Twenty-three new derivatives of the heptaene nystatin analogue 28,29-didehydronystatin A(1) (1) (S44HP) were obtained by chemical modification of C16 carboxyl and amino groups of mycosamine. These derivatives comprised 15 carboxamides, 4 N-alkyl derivatives, 3 N-derivatives containing additional N-linked monosaccharide or disaccharide moiety (products of Amadori rearrangement), and 1 N-aminoacyl derivative. The derivatives have been tested in vitro against yeasts Candida albicans, Cryptococcus humicolus, and filamentous fungi (molds) Aspergillus niger and Fusarum oxysporum, as well as for hemolytic activity against human erythrocytes.
View Article and Find Full Text PDFSeven polyene macrolides with alterations in the polyol region and exocyclic carboxy group were obtained via genetic engineering of the nystatin biosynthesis genes in Streptomyces noursei. In vitro analyses of the compounds for antifungal and hemolytic activities indicated that combinations of several mutations caused additive improvements in their activity-toxicity properties. The two best analogs selected on the basis of in vitro data were tested for acute toxicity and antifungal activity in a mouse model.
View Article and Find Full Text PDFThe antibacterial activities of the series of novel N'-(alpha-aminoacyl)- and N'-alpha-(N-akylamino)acyl derivatives of eremomycin and vancomycin containing hydrophobic moieties have been investigated. The N'-(N-alkylglycyl) derivatives of vancomycin are more active against vancomycin-susceptible staphylococci and enterococci and glycopeptide intermediate-resistant Staphylococcus aureus (GISA) than the corresponding eremomycin derivatives, but except for N'-[N-(p-octyloxybenzyl)glycyl-vancomycin] (28) and N'-[N-(p-octyloxybenzyl)-L-alanyl-vancomycin (33)--they are less active against glycopeptide-resistant enterococci (GRE). Derivatives 28 and 33 are the most active compounds (MIC's for glycopeptide-sensitive staphylococci and enterococci are 0.
View Article and Find Full Text PDFAscorbigen, a natural product, is an indole derivative of L-ascorbic acid. Its effect on postnatal development and antibacterial resistance of the small intestine was studied on newborn mice. Ascorbigen was administered to 3-5-day old mice in a dose of 100 mg/kg orally every day for 7-10 days.
View Article and Find Full Text PDFN-(adamantyl-1)methyl, N-(adamantyl-2), and N-(omega-aminodecyl) amides of vancomycin, eremomycin, and dechloroeremomycin aglycons and their des-(N-Me-D-Leu) derivatives were synthesized and their antibacterial and anti-HIV activities were investigated. Carboxamides with an intact peptide core demonstrated activity against glycopeptide-susceptible and -resistant bacteria (1-32 microM). N-(adamantyl-1)methylcarboxamide of eremomycin aglycons had good antiretroviral activity (1.
View Article and Find Full Text PDFThe antibacterial properties of glycopeptide antibiotics are based on their interaction with the d-Ala-d-Ala containing pentapeptide of bacterial peptidoglycan. The hydrophobic amides of vancomycin (1), teicoplanin (2), teicoplanin aglycon (3), and eremomycin (4) were compared with similar amides of minimally or low active des-(N-methyl-d-leucyl)eremomycin (5), eremomycin aglycon (6), des-(N-methyl-d-leucyl)eremomycin aglycon (7), and a teicoplanin degradation product TB-TPA (8). All hydrophobic amides of 1, 3, 4, and 6 were almost equally active against glycopeptide-resistant enterococci (GRE) [minimum inhibitory concentrations (MIC)
Des-(N-methyl-D-leucyl)eremomycin was obtained by Edman degradation of eremomycin. Derivatives with a hydrophobic substituent at the exterior of the molecule were then synthesized, and their antibacterial activities were compared with similar derivatives of eremomycin. Comparison of derivatives of eremomycin containing the n-decyl or p-(p-chlorophenyl)benzyl substituent in the eremosamine moiety (N') and n-decyl or p-(p-chlorophenyl)benzylamides with similar derivatives of eremomycin possessing the damaged peptide core (a defective binding pocket) showed that compounds of both types are almost equally active against glycopeptide-resistant strains of enterococci (GRE), whereas eremomycin derivatives are more active against staphylococci.
View Article and Find Full Text PDF