The Inuit are heavily exposed to potentially prooxidant contaminants such as methylmercury (MeHg) and polychlorinated biphenyls (PCB) through their traditional diet. This diet is also an abundant source of n-3 polyunsaturated fatty acids (n-3 PUFA), selenium, and antioxidants, which might reduce cardiovascular risk. Although Inuit from Nunavik have low concentrations of plasma oxidized low-density lipoprotein (OxLDL) and elevated glutathione-related antioxidant defenses, the variance in OxLDL was predicted by PCB and blood glutathione, leaving the issue of contaminant-associated oxidative stress unresolved.
View Article and Find Full Text PDFThe effects of a moderate seasonal exposure to methylmercury on plasma low-density lipoprotein (LDL) oxidation and cardiovascular risk indices are not known. The objective of the study was to assess the effects of a seasonal exposure to mercury at similar dose reported to increase cardiovascular risk through fish consumption. Effects on lipoprotein cholesterol and fatty acid profiles, LDL oxidation, and blood oxidant-antioxidant balance were to be assessed in sport fishermen presenting normal blood selenium and omega-3 fatty acid contents.
View Article and Find Full Text PDFThe emergence of therapy-related acute myeloid leukemia (t-AML) has been associated with DNA topoisomerase II (TOP2)-targeted drug treatments and chromosomal translocations frequently involving the MLL, or ALL-1, gene. Two distinct mechanisms have been implicated as potential triggers of t-AML translocations: TOP2-mediated DNA cleavage and apoptotic higher-order chromatin fragmentation. Assessment of the role of TOP2 in this process has been hampered by a lack of techniques allowing in vivo mapping of TOP2-mediated DNA cleavage at nucleotide resolution in single-copy genes.
View Article and Find Full Text PDFThe aim of the present study was to investigate the potential deleterious effects of dietary contaminants such as polychlorinated biphenyls (PCBs) and methylmercury (MeHg) on different molecules sensitive to oxidative stress, namely, plasma oxidized low-density lipoproteins (OxLDLs), plasma homocysteine (Hcy), blood glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione (GSH). We also planned to assess the potential beneficial effects of long-chain omega-3 polyunsaturated fatty acids (n-3 PUFAs) and selenium (Se) that are also present in the traditional Inuit diet. A total of 99 participants were studied.
View Article and Find Full Text PDFCell Mol Life Sci
May 2005
The thioredoxins (Trxs) constitute a family of enzymes which catalyze the reduction of protein disulfide bonds. Recent animal studies have revealed the importance of the Trx superfamily in various experimental systems. For example, the homozygous disruption of the genes encoding cytoplasmic (TRX1) or mitochondrial Trx (TRX2) in mice generates lethal embryonic phenotypes.
View Article and Find Full Text PDFThioredoxin-2 (Trx2) is a mitochondrial protein-disulfide oxidoreductase essential for control of cell survival during mammalian embryonic development. This suggests that mitochondrial thioredoxin reductase-2 (TrxR2), responsible for reducing oxidized Trx2, may also be a key player in the regulation of mitochondria-dependent apoptosis. With this in mind, we investigated the effects of overexpression of TrxR2, Trx2, or both on mammalian cell responses to various apoptotic inducers.
View Article and Find Full Text PDFAmyloid beta, the major constituent of the senile plaques in the brains of patients with Alzheimer's disease, is cytotoxic to neurons and has a central role in the pathogenesis of the disease. We have previously demonstrated that potent antioxidants idebenone and alpha-tocopherol prevent learning and memory impairment in rats which received a continuous intracerebroventricular infusion of amyloid beta, suggesting a role for oxidative stress in amyloid beta-induced learning and memory impairment. To test the hypothesis, in the present study, we investigated alterations in the immunoreactivity of endogenous antioxidant systems such as mitochondrial Mn-superoxide dismutase, glutathione, glutathione peroxidase and glutathione-S-transferase following the continuous intracerebroventricular infusion of amyloid beta for 2 weeks.
View Article and Find Full Text PDFPregnant C57BL/6 mice were chronically treated with 0, 4, 6, or 8 ppm of methylmercury chloride (MeHg) in drinking water during fetal and early postnatal development. Four behavioral functions were analyzed in female and male offspring between the age of 6 and 12 weeks: motor coordination learning on the rotarod; training to spatial alternation in the standard T maze followed by a working memory test with delays; spontaneous locomotion and rearings in the open field; reference and working memory assessment in the modified T maze [Behav. Neurosci.
View Article and Find Full Text PDFWe previously reported that hyperoxia (95% O(2)) induces an S-phase cell cycle arrest in glutathione peroxidase-deficient human carcinoma cells T47D-H3 (Exp. Cell Res. 256:347-357; 2000).
View Article and Find Full Text PDFThrough the induction of apoptosis, CD95 plays a crucial role in the immune response and the elimination of cancer cells. Ligation of CD95 receptor activates a complex signaling network that appears to implicate the generation of reactive oxygen species (ROS). This study investigated the place of ROS production in CD95-mediated apoptosis and the role of the antioxidant enzyme glutathione peroxidase-1 (GPx1).
View Article and Find Full Text PDFNeurotoxicol Teratol
February 2002
Pregnant C57BL/6 mice were orally given daily doses of 4 or 6 mg/kg of methylmercury chloride (MeHg) or vehicle during either gestational days 7-9 (GD7-9) or days 12-14 (GD12-14). Their female offspring were tested between 6 and 16 weeks of age on a variety of behavioral tasks. Motor coordination on the rotarod and visual discrimination learning in the Y maze were not affected by administration of MeHg either at GD7-9 or at GD12-14.
View Article and Find Full Text PDFReduced glutathione and N-acetylcysteine can inhibit both apoptosis and necrosis of several cell types, suggesting a critical role for reactive oxygen species (ROS) in cell death. However, how the cellular defense against oxidative stress is connected with other cell death mediators remains unclear. We selectively investigated the interaction of seleno-glutathione peroxidase-1 (GPx-1), the major enzyme responsible for peroxide detoxification in mammalian cells, with the cytotoxic response of T47D human breast cancer cells to doxorubicin, an anticancer drug known to promote production of ROS and apoptotic mediator ceramide.
View Article and Find Full Text PDFThe production of oxyradicals by mitochondria (mt) is a source of oxidative damage to mtDNA such as 8-oxo-dG lesions that may lead to mutations and mitochondrial dysfunction. The potential protection of mtDNA by glutathione peroxidase-1 (GPx1) was investigated in GPx1-proficient (GPx-2) and GPx1-deficient (Hygro-3) human breast T47D cell transfectants. GPx activity and GPx1-like antigen concentration in mitochondria were respectively at least 100-fold and 20- to 25-fold higher in GPx2 than Hygro-3 cells.
View Article and Find Full Text PDFLittle is known about cell-cycle checkpoint activation by oxidative stress in mammalian cells. The effects of hyperoxia on cell-cycle progression were investigated in asynchronous human T47D-H3 cells, which contain mutated p53 and fail to arrest at G1/S in response to DNA damage. Hyperoxic exposure (95% O(2), 40-64 h) induced an S-phase arrest associated with acute inhibition of Cdk2 activity and DNA synthesis.
View Article and Find Full Text PDFThere is increasing evidence that oxygen free radicals contribute to ischemic brain injury. It is unclear, however, to what extent specific antioxidant enzymes can prevent or reverse the impairment of synaptic function caused by transient hypoxia. In this study, we investigated in transgenic (Tg) mice whether a moderate increase in glutathione peroxidase-1 (GPx1) may improve the capacity of CA1 pyramidal cells to recover synaptic transmission after a short period of hypoxia in vitro.
View Article and Find Full Text PDFReactive oxygen species formation is strongly suspected to play a role in multistep carcinogenesis, notably in tumor promotion. The tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) induces peroxide production, oxidative damage to DNA and inflammation in mouse skin. TPA is also known to cause a decrease in the activity of several antioxidant enzymes including glutathione peroxidases (GPx).
View Article and Find Full Text PDFMol Cell Biol
September 1997
DNA end-labeling procedures were used to analyze both the frequency and distribution of DNA strand breaks in mammalian cells exposed or not to different types of DNA-damaging agents. The 3' ends were labeled by T4 DNA polymerase-catalyzed nucleotide exchange carried out in the absence or presence of Escherichia coli endonuclease IV to cleave abasic sites and remove 3' blocking groups. Using this sensitive assay, we show that DNA isolated from human cells or mouse tissues contains variable basal levels of DNA strand interruptions which are associated with normal bioprocesses, including DNA replication and repair.
View Article and Find Full Text PDFNuclear factor kappa B (NF-kappa B) is a potent and pleiotropic transcription factor that can be activated by a wide variety of inducers, including interleukin-1 (IL-1). Although the detailed activation mechanism of NF-kappa B is still under investigation, it requires both phosphorylation and degradation of its inhibitory subunit I kappa B and the presence of an oxidative environment. In this study, we systematically evaluated the influence of glutathione peroxidase, glutathione reductase and catalase on IL-1-induced NF-kappa B activation by analysing the effect of specific inhibitors of these enzymes.
View Article and Find Full Text PDFRecent evidence suggests that DNA damage of various origins is not randomly distributed in the genome but appears to be clustered in unidentified hypersensitive regions of the chromatin. A model was proposed that stipulates that unpaired DNA stretches, such as those found in scaffold- (or matrix)-associated regions (SARs) under torsional strain, are candidate regions of hypersensitivity to DNA damage in vivo. In this study, we assessed in vitro the relative susceptibility of supercoiled plasmids containing a SAR or chromatin loop DNA segment to DNA damage induced by acid-catalyzed depurination or FeIII-bleomycin.
View Article and Find Full Text PDFCytoplasmic seleno-glutathione peroxidase, by reducing hydrogen peroxide and fatty acid hydroperoxides, may be a major protective enzyme against oxidative damage in the brain. Oxidative damage is strongly suspected to contribute to normal aging and neurodegenerative process of Alzheimer's and Parkinson's diseases. We report here an immunocytochemical analysis of the localization of glutathione peroxidase in the adult mouse brain, carried out with an affinity-purified polyclonal antibody.
View Article and Find Full Text PDFWe report here that both kappa B-dependent transactivation of a reporter gene and NF-kappa B activation in response to tumor necrosis factor (TNF alpha) or H2O2 treatments are deficient in human T47D cell transfectants that overexpress seleno-glutathione peroxidase (GSHPx). These cells feature low reactive oxygen species (ROS) levels and decreased intracellular ROS burst in response to TNF alpha treatment. Decreased ROS levels and NF-kappa B activation were likely to result from GSHPx increment since these phenomena were no longer observed when GSHPx activity was reduced by selenium depletion.
View Article and Find Full Text PDFThe small stress protein heat-shock protein 27 (hsp27) is an oligomeric phosphoprotein, constitutively expressed in most human cells, which enhances cellular resistance to tumour necrosis factor alpha (TNF alpha). This phenomenon correlates with dramatic changes in hsp27 cellular location, structural organization and phosphorylation. To gain a better understanding of the molecular mechanisms regulating these properties of hsp27, we investigated whether they were a consequence of the intracellular production of reactive oxygen species (ROS) generated by TNF alpha.
View Article and Find Full Text PDFThe heat shock cognate protein HSP73 (or HSC70) is a member of the HSP70 multigene family. This protein has several functions, including binding to nascent polypeptides to facilitate correct folding and the uncoating of clathrin-coated vesicles. Analysis of somatic cell hybrids by two-dimensional protein gel electrophoresis revealed the presence of a 73-kDa protein in two hybrids containing human chromosomes 5, 6, 9, and 11 in common.
View Article and Find Full Text PDF