Objectives: A decline in mitochondrial function and increased susceptibility to oxidative stress is a hallmark of ageing. Exercise endogenously generates reactive oxygen species (ROS) in skeletal muscle and promotes mitochondrial remodelling resulting in improved mitochondrial function. It is unclear how exercise induced redox signalling results in alterations in mitochondrial dynamics and morphology.
View Article and Find Full Text PDFBasic Helix-Loop-Helix (bHLH) transcription factors TFEB/TFE3 and HLH-30 are key regulators of autophagy induction and lysosomal biogenesis in mammals and C. elegans, respectively. While much is known about the regulation of TFEB/TFE3, how HLH-30 subcellular dynamics and transactivation are modulated are yet poorly understood.
View Article and Find Full Text PDFIt has remained unknown how cells reduce cystine taken up from the extracellular space, which is a required step for further utilization of cysteine in key processes such as protein or glutathione synthesis. Here, we show that the thioredoxin-related protein of 14 kDa (TRP14, encoded by TXNDC17) is the rate-limiting enzyme for intracellular cystine reduction. When TRP14 is genetically knocked out, cysteine synthesis through the transsulfuration pathway becomes the major source of cysteine in human cells, and knockout of both pathways becomes lethal in C.
View Article and Find Full Text PDFIron overload, characterized by accumulation of iron in tissues, induces a multiorgan toxicity whose mechanisms are not fully understood. Using cultured cell lines, Caenorhabditis elegans, and mice, we found that ferroptosis occurs in the context of iron-overload-mediated damage. Exogenous oleic acid protected against iron-overload-toxicity in cell culture and Caenorhabditis elegans by suppressing ferroptosis.
View Article and Find Full Text PDFExercise generates a site-specific increase in Reactive Oxygen Species (ROS) within muscle that promotes changes in gene transcription and mitochondrial biogenesis, required for the beneficial adaptive response. We demonstrate that Peroxiredoxin 2 (Prdx2), an abundant cytoplasmic 2-Cys peroxiredoxin, is required for the adaptive hormesis response to physiological levels of HO in myoblasts and following exercise in C. elegans.
View Article and Find Full Text PDFStructural and regulatory requirements of mammalian spermatozoa in both development and function make them extremely unique cells. Looking at the complexity of spermatozoon structure and its requirements for both motility and quick breakdown within the post-fertilization environment, as well as its functional needs as an extremely streamlined cell with high energy requirements, demonstrate the high importance of oxidative-reductive processes. The oxidative state of the testis and epididymis during sperm development and maturation highly influences sperm structure, with a high dependence on disulfide bond formation, facilitated by thiol mediated processes.
View Article and Find Full Text PDFEDEM-1, EDEM-2 and EDEM-3 are key players for the quality control of newly synthesized proteins in the endoplasmic reticulum (ER) by accelerating disposal and degradation of misfolded proteins through ER Associated Degradation (ERAD). Although many previous studies reported the role of individual ERAD components especially in cell-based systems, still little is known about the consequences of ERAD dysfunction under physiological and ER stress conditions in the context of a multicellular organism. Here we report the first individual and combined characterization and functional interplay of EDEM proteins in Caenorhabditis elegans using single, double, and triple mutant combinations.
View Article and Find Full Text PDFMammalian TFEB and TFE3, as well as their ortholog in Caenorhabditis elegans HLH-30, play an important role in mediating cellular response to a variety of stress conditions, including nutrient deprivation, oxidative stress, and pathogen infection. In this study, we identify a novel mechanism of TFEB/HLH-30 regulation through a cysteine-mediated redox switch. Under stress conditions, TFEB-C212 undergoes oxidation, allowing the formation of intermolecular disulfide bonds that result in TFEB oligomerization.
View Article and Find Full Text PDFUnlabelled: Male germline-specific thioredoxin domain containing 8 (TXNDC8; alias SPTRX3) accumulates indefective human spermatozoa. We assessed the efficiency of two-step semen purification inremoving spermatozoa carrying TXNDC8, and examined the relationship of TXNDC8 with theoutcomes of assisted reproductive therapy (ART), conventional semen parameters, and sperm DNA integrity in sperm chromatin structure assay (SCSA). Semen samples (n = 255) from 91 ART couples were screened in two independent trials, both including a two-step, gradient-and-swim-up separation procedure yielding A-samples (raw semen), B-samples (gradient separated), and C-samples (gradient-and-swim-up).
View Article and Find Full Text PDFHepatocellular carcinoma (HCC) represents 80% of the primary hepatic neoplasms. It is the sixth most frequent neoplasm, the fourth cause of cancer-related death, and 7% of registered malignancies. Sorafenib is the first line molecular targeted therapy for patients in advanced stage of HCC.
View Article and Find Full Text PDFMutations in the human gene, encoding a slow skeletal muscle/β-cardiac myosin heavy chain, cause different types of myopathies. The nematode model has frequently been employed to study the molecular and physiological consequences of mutations in muscle function by introducing mutations into the gene, the worm ortholog. We report here that the model is not appropriate for such studies if they involve expression of the UNC-54 protein (wild-type or fused to green fluorescent protein) above endogenous levels.
View Article and Find Full Text PDFAdrenoleukodystrophy is a neurometabolic disorder caused by a defective peroxisomal ABCD1 transporter of very long-chain fatty acids (VLCFAs). Its pathogenesis is incompletely understood. Here we characterize a nematode model of X-ALD with loss of the pmp-4 gene, the worm orthologue of ABCD1.
View Article and Find Full Text PDFQuercetin is one the most abundant flavonoids in the human diet. Although it is well known that quercetin exhibits a range of biological activities, the mechanisms behind these activities remain unresolved. The aim of this work is to progress in the knowledge of the molecular mechanisms involved in the biological effects of quercetin using as a model organism.
View Article and Find Full Text PDFHuman selenium-binding protein 1 (SELENBP1) was originally identified as a protein binding selenium, most likely as selenite. SELENBP1 is associated with cellular redox and thiol homeostasis in several respects, including its established role as a methanethiol oxidase that is involved in degradation of methanethiol, a methionine catabolite, generating hydrogen sulfide (HS) and hydrogen peroxide (HO). As both HS and reactive oxygen species (such as HO) are major regulators of Caenorhabditis elegans lifespan and stress resistance, we hypothesized that a SELENBP1 ortholog in C.
View Article and Find Full Text PDFAnimal development requires the execution of specific transcriptional programs in different sets of cells to build tissues and functional organs. Transcripts are exported from the nucleus to the cytoplasm where they are translated into proteins that, ultimately, carry out the cellular functions. Here we show that in Caenorhabditis elegans, reduction of mRNA export strongly affects epithelial morphogenesis and germline proliferation while other tissues remain relatively unaffected.
View Article and Find Full Text PDFMultiple thioredoxin isoforms exist in all living cells. To explore the possible functions of mammalian mitochondrial thioredoxin 2 (Trx2), an interactome of mouse Trx2 was initially created using (i) a monothiol mouse Trx2 species for capturing protein partners from different organs and (ii) yeast two hybrid screens on human liver and rat brain cDNA libraries. The resulting interactome consisted of 195 proteins (Trx2 included) plus the mitochondrial 16S RNA.
View Article and Find Full Text PDFThioredoxins (TRX) are traditionally considered as enzymes catalyzing redox reactions. However, redox-independent functions of thioredoxins have been described in different organisms, although the underlying molecular mechanisms are yet unknown. We report here the characterization of the first generated endogenous redox-inactive thioredoxin in an animal model, the TRX-1 in the nematode Caenorhabditis elegans.
View Article and Find Full Text PDFIn the presence of aggregation-prone proteins, the cytosol and endoplasmic reticulum (ER) undergo a dramatic shift in their respective redox status, with the cytosol becoming more oxidized and the ER more reducing. However, whether and how changes in the cellular redox status may affect protein aggregation is unknown. Here, we show that C.
View Article and Find Full Text PDFThe nematode Caenorhabditis elegans has been used to examine the influence of epicatechin (EC), an abundant flavonoid in the human diet, in some stress biomarkers (ROS production, lipid peroxidation and protein carbonylation). Furthermore, the ability of EC to modulate the expression of some key genes in the insulin/IGF-1 signaling pathway (IIS), involved in longevity and oxidative or heat shock stress response, has also been explored. The final aim was to contribute to the elucidation of the mechanisms involved in the biological effects of flavonoids.
View Article and Find Full Text PDFSex differences in brain physiology and by inference various pathologies are generally recognized, however frequently ignored in epidemiological and experimental studies, leading to numerous data gaps. As a consequence, the mechanisms underlying sexual dimorphism of neurological diseases remain largely unknown. Several cellular and molecular pathways linked to the etiology and pathogenesis of various brain disorders have been recently described as sex-specific.
View Article and Find Full Text PDFMYH7 gene mutations are associated with wide clinical and genetic heterogeneity. We report a novel founder mutation in MYH7 in Southern Spain (Andalucía). We studied two index patients and 24 family members from two apparently independent families by physical examination, serum creatine-kinase, muscle MRI, sequencing studies and genetic linkage analysis.
View Article and Find Full Text PDF