Publications by authors named "Miranda-Anaya Manuel"

The biological clock regulates the way our body works throughout the day, including releasing hormones and food intake. Disruption of the biological clock (chronodisruption) may deregulate satiety, which is strictly regulated by hormones and neurotransmitters, leading to health problems like obesity. Nowadays, using bioactive compounds as a coadjutant for several pathologies is a common practice.

View Article and Find Full Text PDF

Given the ever-increasing prevalence of type 2 diabetes and obesity, the pressure on global healthcare is expected to be colossal, especially in terms of blindness. Electroretinogram (ERG) has long been perceived as a first-use technique for diagnosing eye diseases, and some studies suggested its use for preventable risk factors of type 2 diabetes and thereby diabetic retinopathy (DR). Here, we show that in a non-evoked mode, ERG signals contain spontaneous oscillations that predict disease cases in rodent models of obesity and in people with overweight, obesity, and metabolic syndrome but not yet diabetes, using one single random forest-based model.

View Article and Find Full Text PDF

The mouse spontaneously develops the condition of obesity in captivity when fed regular chow. We aim to study the differences in metabolic performance and thermoregulation between adult lean and obese male mice. The experimental approach included indirect calorimetry using metabolic cages for VO intake and VCO production.

View Article and Find Full Text PDF

The progression of amyloid plaques and neurofibrillary tangles in different brain areas is associated with the effects of Alzheimer's disease (AD). In addition to cognitive impairment, circadian alterations in locomotor activity have also been detected, but they have not been characterized in a jet lag protocol. Therefore, the present study aimed to compare 3xTg-AD and non-transgenic mice in changes of 24 h cycles of spontaneous locomotor activity in a jet lag protocol, in an environment without a running wheel, at 3 different states of neuronal damage: early, intermediate and advanced (3, 8 and 13 months, respectively).

View Article and Find Full Text PDF

Obesity is a global health threat and a risk factor for several metabolic conditions. Though circadian dysfunction has been considered among the multiple causes of obesity, little work has been done to explore the relationship between obesity, circadian dysfunction, and sexual dimorphism. The mouse is a suitable model for such research.

View Article and Find Full Text PDF

Circadian rhythms are the product of the interaction of molecular clocks and environmental signals, such as light-dark cycles and eating-fasting cycles. Several studies have demonstrated that the circadian rhythm of peripheral clocks, and behavioural and metabolic mediators are re-synchronized in rodents fed under metabolic challenges, such as hyper- or hypocaloric diets and subjected to time-restricted feeding protocols. Despite the metabolic challenge, these approaches improve the metabolic status, raising the enquiry whether removing progressively the hypocaloric challenge in a  time-restricted feeding protocol leads to metabolic benefits by the synchronizing effect.

View Article and Find Full Text PDF

Melanin-concentrating hormone (MCH) is a conserved neuropeptide, predominantly located in the diencephalon of vertebrates, and associated with a wide range of functions. While functional studies have focused on the use of the traditional mouse laboratory model, critical gaps exist in our understanding of the morphology of the MCH system in this species. Even less is known about the nontraditional animal model Neotomodon alstoni (Mexican volcano mouse).

View Article and Find Full Text PDF

Disruption of circadian rhythms influences the pathogenesis of obesity, particularly with the basic regulation of food intake and metabolism. A link between metabolism and the circadian clock is the peroxisome proliferator-activated receptors (PPARs). The Neotomodon alstoni mouse, known as the "Mexican volcano mouse," may develop obesity if fed a normo-caloric diet.

View Article and Find Full Text PDF

We analyzed the effect of human visitors on the behavior of a group of spider monkeys (Ateles geoffroyi) kept on a small tourist island. Although the spider monkey is a common species in zoos, there are very few specific studies on visitor effects on these monkeys. We conducted behavioral observations on the group of spider monkeys to evaluate the effect of visitors.

View Article and Find Full Text PDF

Recently, the relationship between the circadian system and female reproduction has been of great interest; ovarian hormones can modify the amount and distribution of daily activity differently in rodent species. The volcano mouse Neotomodon alstoni is a species in which it is possible to study the circadian rhythm of locomotion, and it offers comparative information about the influence of ovaries on the circadian system. In this study, we used infrared crossings to compare free movement in intact and sham-operated or ovariectomized mice.

View Article and Find Full Text PDF

This article compared the effects of spontaneous obesity on the daily profile in the relative amount of the leptin receptor (LepRb), and its output. That is the precursor Pro-opiomelanocortin (POMC) over a 24-hour period and compared with differences in locomotion and food intake in periods of artificial light. Differences between lean and obese mice were examined, as were sex differences.

View Article and Find Full Text PDF

Obesity is a growing problem worldwide with a clear impact on health status. It is also a condition that negatively affects circadian rhythms. When the mouse is fed a regular rodent chow, some individuals develop obesity, representing an opportunity to compare the effects of spontaneous obesity upon the circadian organization in this species with that observed in other rodents with induced obesity.

View Article and Find Full Text PDF

Obesity is a world problem that requires a better understanding of its physiological and genetic basis, as well as the mechanisms by which the hypothalamus controls feeding behavior. The volcano mouse Neotomodon alstoni develops obesity in captivity when fed with regular chow diet, providing a novel model for the study of obesity. Females develop obesity more often than males; therefore, in this study, we analysed in females, in proestrous lean and obese, the differences in hypothalamus expression of receptors for leptin, ghrelin (growth hormone secretagogue receptor GHS-R), and VPAC, and correlates for plasma levels of total ghrelin.

View Article and Find Full Text PDF

The aim of the present study is to evaluate whether circadian locomotor activity, and the daily profile of plasma parameters related to metabolic syndrome (nutrients: glucose and triacylglycerides, and hormones: insulin and leptin), differ between male and female Neotomodon alstoni mice, both lean and obese. Young adult animals were captured in the field and kept at the laboratory animal facility. After 6 to 7 months feeding the animals ad libitum with a regular diet for laboratory rodents, 50-60% of mice became obese.

View Article and Find Full Text PDF

Malnutrition produces changes in the central nervous system (CNS) of mammals during development, related to the intensity and timing of the malnutrition insult during the pre- or postnatal period. Protein malnutrition produces irreversible changes in hippocampal formation and some brain stem nuclei. The suprachiasmatic nucleus (SCN) is dramatically altered by low-protein diets during the gestational and perinatal periods.

View Article and Find Full Text PDF

The firing of hypothalamic hypocretin/orexin neurons is vital for normal sleep-wake transitions, but its molecular determinants are not well understood. It was recently proposed that TASK (TWIK-related acid-sensitive potassium) channels [TASK1 (K(2P)3.1) and/or TASK3 (K(2P)9.

View Article and Find Full Text PDF

Lithium, a drug commonly used to treat mood disorders, and the psychostimulant methamphetamine are both capable of altering circadian rhythmicity. Although the actions of lithium on the circadian system are thought to occur through inhibition of glycogen synthase kinase-3beta (GSK3beta), the mechanism by which methamphetamine alters circadian rhythms is unknown. We tested the effects of concurrent methamphetamine and lithium treatment on the circadian wheel-running behavior of mice.

View Article and Find Full Text PDF

Independently, chronic protein malnutrition and aging have been shown to affect locomotor activity (LA) and body temperature (BT) rhythms in mammals. The objective of the present study was to ascertain the combined effects of these two factors by examining period, entrainment and other circadian parameters between LA and BT rhythms. Chronic protein malnourished (PM) and well-nourished (WN) male Sprague-Dawley rats (550-590 days of age) were implanted with activity temperature intraperitoneal radio transmitters (Mini Mitter) and exposed to different lighting protocols during at least 10 days - light-dark cycles (LD 12:12), constant darkness (DD), skeleton photoperiod (SP) and again LD.

View Article and Find Full Text PDF

Circadian physiology in the vertebrate retina is regulated by several neurotransmitters. In the lateral eyes of the green iguana the circadian rhythm of melatonin content peaks during the night while the rhythm of dopamine peaks during the day. In the present work, the authors explore the interaction of these 2 neurotransmitters during the circadian cycle.

View Article and Find Full Text PDF

The circadian system of the lizard Iguana iguana is composed of several independent pacemakers that work in concert: the pineal gland, retinae of the lateral eyes, and a fourth oscillator presumed to be located in the hypothalamus. These pacemakers govern the circadian expression of multiple behaviors and physiological processes, including rhythms in locomotor activity, endogenous body temperature, electroretinogram, and melatonin synthesis. The numerous, easily measurable rhythmic outputs make the iguana an ideal organism for examining the contributions of individual oscillators and their interactions in governing the expression of overt circadian rhythms.

View Article and Find Full Text PDF

The amplitude of the b-wave of the electroretinogram (ERG) varies with a circadian rhythm in the green iguana; the amplitude is high during the day(or subjective day) and low during the night (or subjective night). Dopamine and melatonin contents in the eye are robustly rhythmic under constant conditions; dopamine levels are high during the subjective day, and melatonin levels are high during the subjective night. Dopamine and melatonin affect the amplitude of the b-wave in an antagonistic and phase-dependent manner: dopamine D2-receptor agonists injected intraocularly during the subjective night produce high-amplitude b-waves characteristic of the subjective day, whereas melatonin injected intraocularly during the subjective day reduces b-wave amplitude.

View Article and Find Full Text PDF