Objectives: Morphological intraspecific variation is due to the balance between skeletal plasticity and genetic constraint on the skeleton. Osteogenic responses to external stimuli, such as locomotion, have been well documented interspecifically across the primate order, but less so at the intraspecific level. Here, we examine the differences in cross-sectional variability of the femur, humerus, radius, and tibia in Pan troglodytes troglodytes versus Gorilla gorilla gorilla.
View Article and Find Full Text PDFLiving hominoids are distinguished by upright torsos and versatile locomotion. It is hypothesized that these features evolved for feeding on fruit from terminal branches in forests. To investigate the evolutionary context of hominoid adaptive origins, we analyzed multiple paleoenvironmental proxies in conjunction with hominoid fossils from the Moroto II site in Uganda.
View Article and Find Full Text PDFThe ability of a bone to withstand loads depends on its structural and material properties. These tend to differ among species with different modes of locomotion, reflecting their unique loading patterns. The evolution of derived limb morphologies, such as the long limbs associated with jumping, may compromise overall bone strength.
View Article and Find Full Text PDFAm J Phys Anthropol
November 2018
Objectives: Humans exhibit significant ecogeographic variation in bone size and shape. However, it is unclear how significantly environmental temperature influences cortical and trabecular bone, making it difficult to recognize adaptation versus acclimatization in past populations. There is some evidence that cold-induced bone loss results from sympathetic nervous system activation and can be reduced by nonshivering thermogenesis (NST) via uncoupling protein (UCP1) in brown adipose tissue (BAT).
View Article and Find Full Text PDFLimb bone size and shape in terrestrial mammals scales predictably with body mass. Weight-bearing limb bones in these species have geometries that enable them to withstand deformations due to loading, both within and between species. Departures from the expected scaling of bone size and shape to body mass occur in mammals that have become specialized for different types of locomotion.
View Article and Find Full Text PDFBackground: Mammals show a predictable scaling relationship between limb bone size and body mass. This relationship has a genetic basis which likely evolved via natural selection, but it is unclear how much the genetic correlation between these traits in turn impacts their capacity to evolve independently. We selectively bred laboratory mice for increases in tibia length independent of body mass, to test the hypothesis that a genetic correlation with body mass constrains evolutionary change in tibia length.
View Article and Find Full Text PDF