Volumetric muscle loss (VML) impairs the regenerative ability of skeletal muscle resulting in scar tissue formation and loss of function. Current treatments are of limited efficacy as they do not fully restore function, i.e.
View Article and Find Full Text PDFJ Biomed Mater Res A
December 2021
Skeletal muscles normally have a remarkable ability to repair themselves; however, large muscle injuries and several myopathies diminish this ability leading to permanent loss of function. No clinical therapy yet exists that reliably restores muscle integrity and function following severe injury. Consequently, numerous tissue engineering techniques, both acellular and with cells, are being investigated to enhance muscle regeneration.
View Article and Find Full Text PDFAfter severe trauma, skeletal muscle cannot repair itself leading to scar tissue formation and functional impairment. A novel approach to overcome this issue is to alter the fibrotic response in muscle using regenerative biomaterials, such as those containing methacrylic acid (MAA). In the skin, MAA-based materials have been shown to promote wound healing and new vessel formation, through endogenous mechanisms, including macrophage polarization; however, MAA has yet to be studied outside the skin.
View Article and Find Full Text PDFThis study reports that a methacrylic acid (MAA)-based copolymer coating generates constructive remodeling of polypropylene (PP) surgical mesh in a subcutaneous model. This coating is non-bioresorbable and follows the architecture of the mesh without impeding connective tissue integration. Following implantation, the tissue response is biased toward vascularization instead of fibrosis.
View Article and Find Full Text PDFThere is a need to establish in vitro lung alveolar epithelial culture models to better understand the fundamental biological mechanisms that drive lung diseases. While primary alveolar epithelial cells (AEC) are a useful option to study mature lung biology, they have limited utility in vitro. Cells that survive demonstrate limited proliferative capacity and loss of phenotype over the first 3-5 days in traditional culture conditions.
View Article and Find Full Text PDF