Publications by authors named "Miranda L Byrne-Steele"

Lupus erythematosus (LE) is a heterogeneous, antibody-mediated autoimmune disease. Isolate discoid LE (IDLE) and systematic LE (SLE) are traditionally regarded as the two ends of the spectrum, ranging from skin-limited damage to life-threatening multi-organ involvement. Both belong to LE, but IDLE and SLE differ in appearance of skin lesions, autoantibody panels, pathological changes, treatments, and immunopathogenesis.

View Article and Find Full Text PDF

Severe COVID-19 is associated with profound lymphopenia and an elevated neutrophil to lymphocyte ratio. We applied a novel dimer avoidance multiplexed polymerase chain reaction next-generation sequencing assay to analyze T (TCR) and B cell receptor (BCR) repertoires. Surprisingly, TCR repertoires were markedly diminished during the early onset of severe disease but recovered during the convalescent stage.

View Article and Find Full Text PDF
Article Synopsis
  • The text emphasizes the importance of precision medicine in tailoring treatments based on individual patient characteristics, particularly in complex cases like multiple organ dysfunction syndrome (MODS).
  • It discusses a study using total transcriptomics on blood samples from 27 patients, which provides insights into disease mechanisms by mapping various biological factors such as viral/bacterial load and tissue damage.
  • The findings highlight the potential of RNA sequencing as a powerful tool in precision medicine, revealing intricate interactions between a patient’s genetics and their response to infections.
View Article and Find Full Text PDF

Background: Immunology research, particularly next generation sequencing (NGS) of the immune T-cell receptor β (TCRβ) repertoire, has advanced progression in several fields, including treatment of various cancers and autoimmune diseases. This study aimed to identify the TCR repertoires from dry blood spots (DBS), a method that will help collecting real-world data for biomarker applications.

Methods: Finger-prick blood was collected onto a Whatman filter card.

View Article and Find Full Text PDF

Proliferating cell nuclear antigen (PCNA) is a DNA-clamping protein that is responsible for increasing the processivity of the replicative polymerases during DNA replication and repair. The PCNA from the eurypsychrophilic archaeon Methanococcoides burtonii DSM 6242 (MbPCNA) has been targeted for protein structural studies. A recombinant expression system has been created that overproduces MbPCNA with an N-terminal hexahistidine affinity tag in Escherichia coli.

View Article and Find Full Text PDF

Proliferating cell nuclear antigen (PCNA) is a DNA sliding clamp which confers processivity on replicative DNA polymerases. PCNA also acts as a sliding platform that enables the association of many DNA-processing proteins with DNA in a non-sequence-specific manner. In this investigation, the PCNA from the hyperthermophilic archaeon Thermococcus thioreducens (TtPCNA) was cloned, overexpressed in Escherichia coli and purified to greater than 90% homogeneity.

View Article and Find Full Text PDF

Background: Gene synthesis technologies are an important tool for structural biology projects, allowing increased protein expression through codon optimization and facilitating sequence alterations. Existing methods, however, can be complex and not always reproducible, prompting researchers to use commercial suppliers rather than synthesize genes themselves.

Results: A PCR-based gene synthesis method, referred to as SeqTBIO, is described to efficiently assemble the coding regions of two novel hyperthermophilic proteins, PAZ (Piwi/Argonaute/Zwille) domain, a siRNA-binding domain of an Argonaute protein homologue and a deletion mutant of a family A DNA polymerase (PolA).

View Article and Find Full Text PDF