Bone marrow provides a unique microenvironment favoring the colonization and outgrowth of metastatic tumor cells. Despite the high incidence of bone metastasis in breast and prostate cancer patients, many of the molecular mechanisms controlling metastatic progression remain unclear. Several gene signatures associated with bone metastasis have been reported, but no metastasis-specific gene alterations have been identified.
View Article and Find Full Text PDFBreast cancer cells frequently home to the bone, but the mechanisms controlling tumor colonization of the bone marrow remain unclear. We report significant enrichment of bone-disseminated estrogen receptor positive human MCF7 cells by 17 β-estradiol (E2) following intracardiac inoculation. Using flow cytometric and quantitative PCR approaches, tumor cells were detected in >80% of MCF7 tumor-inoculated mice, regardless of E2, suggesting that E2 is not required for MCF7 dissemination to the bone marrow.
View Article and Find Full Text PDFPurpose Of Review: This review highlights our current knowledge of oxygen tensions in the bone marrow, and how low oxygen tensions (hypoxia) regulate tumor metastasis to and colonization of the bone marrow.
Recent Findings: The bone marrow is a relatively hypoxic microenvironment, but oxygen tensions fluctuate throughout the marrow cavity and across the endosteal and periosteal surfaces. Recent advances in imaging have made it possible to better characterize these fluctuations in bone oxygenation, but technical challenges remain.
Metastatic breast cancer is an incurable disease and identification of novel therapeutic opportunities is vital. Triple-negative breast cancer (TNBC) frequently metastasizes and high levels of activated p90RSK (RSK), a downstream MEK-ERK1/2 effector, are found in TNBC. We demonstrate, using direct pharmacologic and genetic inhibition of RSK1/2, that these kinases contribute to the TNBC metastatic process in vivo Kinase profiling showed that RSK1 and RSK2 are the predominant kinases targeted by the new inhibitor, which is based on the natural product SL0101.
View Article and Find Full Text PDF