Appl Environ Microbiol
December 2023
Fusaric acid (FA) is an important virulence factor produced by several species. These fungi are responsible for wilt and rot diseases in a diverse range of crops. FA is toxic for animals, humans and soil-borne microorganisms.
View Article and Find Full Text PDF, , and , commonly referred to as TriTryps, are a group of protozoan parasites that cause important human diseases affecting millions of people belonging to the most vulnerable populations worldwide. Current treatments have limited efficiencies and can cause serious side effects, so there is an urgent need to develop new control strategies. Presently, the identification and prioritization of appropriate targets can be aided by integrative genomic and computational approaches.
View Article and Find Full Text PDFBurkholderia ambifaria T16 is a bacterium isolated from the rhizosphere of barley plants that showed a remarkable antifungal activity. This strain was also able to degrade fusaric acid (5-Butylpyridine-2-carboxylic acid) and detoxify this mycotoxin in inoculated barley seedlings. Genes and enzymes responsible for fusaric acid degradation have an important biotechnological potential in the control of fungal diseases caused by fusaric acid producers, or in the biodegradation/bio catalysis processes of pyridine derivatives.
View Article and Find Full Text PDFDecades of successful use of antibiotics is currently challenged by the emergence of increasingly resistant bacterial strains. Novel drugs are urgently required but, in a scenario where private investment in the development of new antimicrobials is declining, efforts to combat drug-resistant infections become a worldwide public health problem. Reasons behind unsuccessful new antimicrobial development projects range from inadequate selection of the molecular targets to a lack of innovation.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
October 2020
The surface-layer (S-layer) protein of Lactobacillus acidophilus is a crystalline array of self-assembling subunits, non-covalently bound to the most outer cell wall envelope, which constitutes up to 20% of the total cell protein content. These attributes make S-layer proteins an excellent anchor for the development of microbial cell-surface display systems. In L.
View Article and Find Full Text PDF