Cross-modality image synthesis is an active research topic with multiple medical clinically relevant applications. Recently, methods allowing training with paired but misaligned data have started to emerge. However, no robust and well-performing methods applicable to a wide range of real world data sets exist.
View Article and Find Full Text PDFArtificial intelligence (AI) is rapidly gaining interest in medicine, including pathological assessments for personalized medicine. In this issue of Cancer Cell, Wagner et al. demonstrate superior accuracy of transformer-based deep learning in predicting biomarker status in CRC.
View Article and Find Full Text PDFConventional histopathology has relied on chemical staining for over a century. The staining process makes tissue sections visible to the human eye through a tedious and labor-intensive procedure that alters the tissue irreversibly, preventing repeated use of the sample. Deep learning-based virtual staining can potentially alleviate these shortcomings.
View Article and Find Full Text PDFHistological changes in tissue are of primary importance in pathological research and diagnosis. Automated histological analysis requires ability to computationally separate pathological alterations from normal tissue. Conventional histopathological assessments are performed from individual tissue sections, leading to the loss of three-dimensional context of the tissue.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
May 2021
Nucleus detection is a fundamental task in histological image analysis and an important tool for many follow up analyses. It is known that sample preparation and scanning procedure of histological slides introduce a great amount of variability to the histological images and poses challenges for automated nucleus detection. Here, we studied the effect of histopathological sample fixation on the accuracy of a deep learning based nuclei detection model trained with hematoxylin and eosin stained images.
View Article and Find Full Text PDFImmunohistochemistry (IHC) of ER, PR, and Ki-67 are routinely used assays in breast cancer diagnostics. Determination of the proportion of stained cells (labeling index) should be restricted on malignant epithelial cells, carefully avoiding tumor infiltrating stroma and inflammatory cells. Here, we developed a deep learning based digital mask for automated epithelial cell detection using fluoro-chromogenic cytokeratin-Ki-67 double staining and sequential hematoxylin-IHC staining as training material.
View Article and Find Full Text PDFDigital pathology has led to a demand for automated detection of regions of interest, such as cancerous tissue, from scanned whole slide images. With accurate methods using image analysis and machine learning, significant speed-up, and savings in costs through increased throughput in histological assessment could be achieved. This article describes a machine learning approach for detection of cancerous tissue from scanned whole slide images.
View Article and Find Full Text PDFCancer involves histological changes in tissue, which is of primary importance in pathological diagnosis and research. Automated histological analysis requires ability to computationally separate pathological alterations from normal tissue with all its variables. On the other hand, understanding connections between genetic alterations and histological attributes requires development of enhanced analysis methods suitable also for small sample sizes.
View Article and Find Full Text PDFThis paper describes work presented at the Nordic Symposium on Digital Pathology 2015, in Linköping, Sweden. Prostatic intraepithelial neoplasia (PIN) represents premalignant tissue involving epithelial growth confined in the lumen of prostatic acini. In the attempts to understand oncogenesis in the human prostate, early neoplastic changes can be modeled in the mouse with genetic manipulation of certain tumor suppressor genes or oncogenes.
View Article and Find Full Text PDF