Publications by authors named "Mira S Olson"

Emerging lead halide perovskite (LHP) photovoltaics are undergoing intense research and development due to their outstanding efficiency and potential for low manufacturing costs that render them competitive with existing photovoltaic (PV) technologies. While today's efforts are focused on stability and scalability of LHPs, the toxicity of lead (Pb) remains a major challenge to their large-scale commercialization. Here, we present a screening-level, EPA-compliant model of fate and transport of Pb leachate in groundwater, soil, and air, following hypothetical catastrophic breakage of LHP PV modules in conceptual utility-scale sites.

View Article and Find Full Text PDF

This study identified and prioritized potential failure scenarios for natural gas drilling operations through an elicitation of people who work in the industry. A list of twelve failure scenarios of concern was developed focusing on specific events that may occur during the shale gas extraction process involving an operational failure or a violation of regulations. Participants prioritized the twelve scenarios based on their potential impact on the health and welfare of the general public, potential impact on worker safety, how well safety guidelines protect against their occurrence, and how frequently they occur.

View Article and Find Full Text PDF

Identifying sources of concern and risk from shale gas development, particularly from the hydraulic fracturing process, is an important step in better understanding sources of uncertainty within the industry. In this study, a risk assessment of residential exposure pathways to contaminated drinking water is carried out. In this model, it is assumed that a drinking water source is contaminated by a spill of flowback water; probability distributions of spill size and constituent concentrations are fit to historical datasets and Monte Carlo simulation was used to calculate a distribution of risk values for two scenarios: (1) use of a contaminated reservoir for residential drinking water supply and (2) swimming in a contaminated pond.

View Article and Find Full Text PDF

Data collected from experiments conducted at a flask scale are regularly used as input data for life cycle assessments and techno-economic analyses for predicting the potential productivities of large-scale commercial facilities. This study measures and compares nitrogen removal and biomass growth rates in treatment systems that utilize an algae-bacteria consortium to remediate landfill leachate at three scales: small (0.25 L), medium (100 L), and large (1000 L).

View Article and Find Full Text PDF

An experimental methodology is presented to compare the performance of two different sized reactors designed for wastewater treatment. In this study, ammonia removal, nitrogen removal and algal growth are compared over an 8-week period in paired sets of small (100 L) and large (1,000 L) reactors designed for algal remediation of landfill wastewater. Contents of the small and large scale reactors were mixed before the beginning of each weekly testing interval to maintain equivalent initial conditions across the two scales.

View Article and Find Full Text PDF

A remediation system for the removal of nitrogen from landfill leachate by a mixed algae-bacteria culture was investigated. This system was designed to treat leachate with minimal inputs and maintenance requirements, and was operated as an open semi-batch reactor in an urban greenhouse. The results of this study showed a maximum nitrogen removal rate of 9.

View Article and Find Full Text PDF

Bacterial infiltration through the subsurface has been studied experimentally under different conditions of interest and is dependent on a variety of physical, chemical and biological factors. However, most bacterial transport studies fail to adequately represent the complex processes occurring in natural systems. Bacteria are frequently detected in stormwater runoff, and may present risk of microbial contamination during stormwater recharge into groundwater.

View Article and Find Full Text PDF

Although deviations from standard guidance for land application of biosolids occur in practice, their importance is largely unknown. A list of such deviations (plausible failure scenarios) were identified at a workshop of industry, regulators, and academic professionals. Next, a survey of similar professionals was conducted to rank the plausible failure scenarios according to their severity, frequency, incentive to ignore control measures, gaps in existing control processes, public concern, and overall concern.

View Article and Find Full Text PDF

Low permeability regions such as clay lenses are difficult to remediate using conventional treatment methods. Bacterial chemotaxis (directed migration toward a contaminant source) may be helpful in enhancing bioremediation of such contaminated sites. This study experimentally simulates a two-dimensional dual-permeability groundwater contamination scenario using a microfluidic device (MFD) and evaluates transverse chemotactic migration of bacteria from high to low permeability regions under various flow velocities.

View Article and Find Full Text PDF

Bacterial swimming in groundwater may create flow disturbances in the surrounding microenvironment thereby enhancing contaminant mixing. Porous microfluidic devices (MFDs) were fabricated in three different pore geometry designs: uniform grain size with large pore throats (MFD-I), nonuniform grain size with restricted pore space (MFD-II), and uniform grain size with small pore throats (MFD-III). Escherichia coli HCB33 was used to assess the effect of bacterial random motility on transverse mixing of a tracer, fluorescent labeled dextran, under three experimental conditions in which motile bacteria, nonmotile bacteria, and plain buffer suspensions were flown through the MFDs at four different flow rates.

View Article and Find Full Text PDF

The goal of the present study was to elucidate the distribution of viable bacteria in chemical gradients and to evaluate the toxic effect of high concentrations of contaminants on contaminant-degrading bacteria under prolonged exposure. Accumulations of viable Pseudomonas putida F1 (P. putida F1) cells were observed surrounding trichloroethylene (TCE)-containing plugs.

View Article and Find Full Text PDF

Subsurface bacteria often have to travel significant distances through tortuous porous media for purposes of groundwater remediation. In modeling such processes, motile bacteria are often represented as suspended colloids, ignoring their individual swimming or diffusive properties. In fact, bacterial migration is much more profoundly affected by the presence of porous media than is that of a chemical contaminant.

View Article and Find Full Text PDF

Bacterial chemotaxis has the potential to enhance biodegradation of organic contaminants in polluted groundwater systems. However, studies of bacterial chemotaxis in porous media are scarce. In this study we use magnetic resonance imaging (MRI) for the noninvasive measurement of changes in bacterial-density distributions in a packed column at a spatial resolution of 330 microm as a function of time.

View Article and Find Full Text PDF